

G.-F. Dalla Betta

Munich, Feb. 13, 2015

Pixelated Low Gain Avalanche Detectors

Gian-Franco Dalla Betta

Department of Industrial Engineering, University of Trento and INFN Trento Institute for Fundamental Physics and Applications Via Sommarive 9, 38123 Povo di Trento (TN), Italy <u>gianfranco.dallabetta@unitn.it</u>

Outline

- Introduction:
 - Avalanche PhotoDiodes (APDs)
- Low Gain Avalanche Detector (LGAD)
 - From pads to pixels
 - Proposed double-sided sensor
 - Simulated performance
- CMOS Avalanche PhotoDiodes
 - Experimental results for standard 0.15 μ m CMOS
 - Gain and noise modeling
- Conclusions

Avalanche PhotoDiodes (APDs)

P-N junctions diodes specially made to exploit impact ionization effects

Linear mode: $V < V_{BD}$:

- Photo-current amplified by a factor M
- Output current proportional to the optical power

Geiger mode: V > V_{BD}:

- Digital photon counter
- Output signal stream with N pulses/s
- Core of SiPMs

Linear-Mode APDs applications

Linear-mode APDs are suitable for applications requiring **high bandwidth** and **high sensitivity**:

- Telecommunication receivers
- High speed laser scanners
- Time-resolved imaging (ToF ranging, FLIM)
- X γ rays, ionizing particles for biomedical and physics applications (w and w/o scintillators)

di Trento

Linear-mode APDs Figures of Merit

- Quantum Efficiency
- Excess noise factor
- Gain-Bandwidth product
- Dark current
- Breakdown voltage
- Temperature sensitivity
- Breakdown voltage uniformity
- Avalanche gain uniformity

Pixel Arrays

Munich, Feb. 13, 2015

IEEE Trans. Electron Devices 13 (1966) 164

Outline

- Introduction:
 - Avalanche PhotoDiodes (APDs)
- Low Gain Avalanche Detector (LGAD)
 - From pads to pixels
 - Proposed double-sided sensor
 - Simulated performance
- CMOS Avalanche PhotoDiodes
 - Experimental results for standard 0.15 μ m CMOS
 - Gain and noise modeling
- Conclusions

Low Gain Avalanche Detector (LGAD)

• APDs revisited for ionizing particles

G.-F. Dalla Betta

- Aiming at low gain both before and after irradiation
- Gain vs breakdown voltage trade-off
- High sensitivity to the implant dose of the multiplication layer
- JTE to prevent from edge breakdown

UNIN

G. Pellegrini, et al., HSTD9 (2013)

Munich, Feb. 13, 2015

Munich, Feb. 13, 2015

From pads to pixels

Possible segmentation options in electron multiplying structures

Munich, Feb. 13, 2015

Not a completely new problem ...

- APD arrays for fast X-ray hybrid pixel detectors
- Special technology developed by Excelitas Canada Inc.
- Thickness 120 μm and 200 $\mu m,$ gain ~ 100 @ Vbias = 500V
- Large gain non uniformity ±15%

G.-F. Dalla Betta

C. Thil et al., 2012 IEEE NSS, N1-231

- Pixel side is simple, gain side quite complex (4 doping steps)
- Plan: start from thick 6" wafers (275 μ m) before going thinner (100 μ m)
- TCAD simulations to predict the performance

G.F. Dalla Betta, RESMDD 2014

TCAD (1): Electrical parameters

G.-F. Dalla Betta

Munich, Feb. 13, 2015

- Simulation results scaled to 50x50 μm² pixels
- Strong impact of the B dose on the breakdown voltage
- Comparison at similar breakdown voltage
- Two-phase depletion behavior observed in both C-V and I-V

- Simulated with mip (Heavy Ion Model) in cylindrical coordinates
- Gain defined as ratio of integral charge with/without avalanche
- Similar gain at high voltage (~15) but with quite different trend

Excess noise factor can be fit with:

$$F = M \cdot k + \left(2 - \frac{1}{M}\right) \cdot (1 - k)$$

k= α_p / α_n – ionization ratio

R.J. McIntyre, IEEE TED 13 (1966) 164

di Trento

TCAD (3): Signals

G.-F. Dalla Betta

- Current pulses in response to a mip (cylindrical coordinates) at different voltages
- Pulse duration dominated by drift of • multiplied holes, thus proportional to the substrate thickness

Munich, Feb. 13, 2015

Impact of segmentation (weighting field): significant delay for 275 µm, much smaller for 100 μ m

G.-F. Dalla Betta

Munich, Feb. 13, 2015

di Trento

Going one step further

- Fast timing circuits might be difficult to embed in small pixels
- But different functions could be divided between the two sides:
 - Position measurement from the small pixel side
 - Time measurement from the gain side \rightarrow capacitance is an issue
- Segmentation of the gain side (macro pixels, ~1mm², ~1pF)

di Trento

Segmentation of the gain side

• Same technology, different layout

G.-F. Dalla Betta

- Acceptable efficiency reduction from macro-pixel edges (~5%)
- It can work safely up to >1200V before breakdown

Outline

- Introduction:
 - Avalanche PhotoDiodes (APDs)
- Low Gain Avalanche Detector (LGAD)
 - From pads to pixels
 - Proposed double-sided sensor
 - Simulated performance
- CMOS Avalanche PhotoDiodes
 - Experimental results for standard 0.15 μ m CMOS
 - Gain and noise modeling
- Conclusions

APD integration in CMOS

- Significant results in the past ten years
- Mainly driven by telecom receivers, but increasing interest also for imaging
- Advantages:
 - Integrated electronics: low parasitics, low costs
 - Array fabrication possible
- Challenges:
 - Guard ring fabrication
 - Doping profiles not optimized for low noise and high quantum efficiency

UNIN

STI

metal shield

STI

Multiplication gain, M

 V_{B} = 23.1 V, σ = 260mV

Quantum Efficiency

Better in the UV and blue

Munich, Feb. 13, 2015

Better in the NIR

• UV light: electron-initiated avalanche

p-sub

NIR light: mixed – majority of hole injection

	pwell/niso	metal shield
poly-	Si	
nwell	p+	STI
n-iso		
p-sub		

Munich, Feb. 13, 2015

- UV light: electron-initiated avalanche
- NIR light: mixed majority of electron injection

- Local model not suitable due to high electric field and narrow space-charge regions
- Very good agreement with non-local models for electron-initiated avalanche

Ila Betta Munich, Feb. 13, 2015 **F vs M: non-local model**

G.-F. Dalla Betta

	pwell/niso	metal shield
poly	-Si	_
n+ nwell	p+	STI
n-iso		
p-sub		

- Also non-local model with hole-initiated avalanche overestimates F
- Good agreement with NIR approximation (mixed injection) with Xj as a fitting parameter

G.-E. Dalla Betta

Conclusions

- 1) Design options for pixelated LGADs were reported
 - TCAD simulations have been used to predict the sensor performance with encouraging results
- 2) Low-noise APDs can be integrated in CMOS processes
 - Good uniformity \rightarrow Arrays are feasible
 - Non-local ionization models can yield an accurate excess noise predictions

Acknowledgement

This work has been supported in part by INFN CSN5, project UFSD, and by the Autonomous Province of Trento and INFN under the framework agreement "MEMS3"