Pixelated Low Gain Avalanche Detectors

Gian-Franco Dalla Betta

Department of Industrial Engineering, University of Trento and INFN Trento Institute for Fundamental Physics and Applications
Via Sommarive 9, 38123 Povo di Trento (TN), Italy

gianfranco.dallabetta@unitn.it
Outline

• Introduction:
 – Avalanche PhotoDiodes (APDs)

• Low Gain Avalanche Detector (LGAD)
 – From pads to pixels
 – Proposed double-sided sensor
 – Simulated performance

• CMOS Avalanche PhotoDiodes
 – Experimental results for standard 0.15\(\mu\)m CMOS
 – Gain and noise modeling

• Conclusions
Avalanche PhotoDiodes (APDs)

P-N junctions diodes specially made to exploit impact ionization effects

Linear mode: $V < V_{BD}$:
- Photo-current amplified by a factor M
- Output current proportional to the optical power

Geiger mode: $V > V_{BD}$:
- Digital photon counter
- Output signal stream with N pulses/s
- Core of SiPMs
Linear-Mode APDs applications

Linear-mode APDs are suitable for applications requiring **high bandwidth** and **high sensitivity**:

- Telecommunication receivers
- High speed laser scanners
- Time-resolved imaging (ToF ranging, FLIM)
- X – γ rays, ionizing particles for biomedical and physics applications (w and w/o scintillators)
Linear-mode APDs Figures of Merit

- Quantum Efficiency
- Excess noise factor
- Gain-Bandwidth product
- Dark current
- Breakdown voltage
- Temperature sensitivity
- Breakdown voltage uniformity
- Avalanche gain uniformity

Pixel Arrays
Excess noise factor

APD noise:

\[i_n^2 = 2qI_{ph} \cdot M^2 F \]

- \(M \): multiplication gain
- \(F \): excess noise factor

\[F = M \cdot k + \left(2 - \frac{1}{M} \right) \cdot (1 - k) \]

Avalanche initiated by:

- \(\alpha \): electron ionization rate
- \(\beta \): hole ionization rate

Electrons (low k) \(\Rightarrow \) small F
Holes (high k) \(\Rightarrow \) high F

Outline

• Introduction:
 – Avalanche PhotoDiodes (APDs)

• Low Gain Avalanche Detector (LGAD)
 – From pads to pixels
 – Proposed double-sided sensor
 – Simulated performance

• CMOS Avalanche PhotoDiodes
 – Experimental results for standard 0.15µm CMOS
 – Gain and noise modeling

• Conclusions
• APDs revisited for ionizing particles
• Aiming at low gain both before and after irradiation
• Gain vs breakdown voltage trade-off
• High sensitivity to the implant dose of the multiplication layer
• JTE to prevent from edge breakdown
From pads to pixels

Possible segmentation options in electron multiplying structures

- **n-in-p**
 - Read electrons
 - Segmentation
 - Region with no gain

- **p-in-p**
 - Read holes
 - Segmentation
Not a completely new problem …

- APD arrays for fast X-ray hybrid pixel detectors
- Special technology developed by Excelitas Canada Inc.
- Thickness 120 µm and 200 µm, gain ~ 100 @ Vbias = 500V
- Large gain non uniformity ±15%

C. Thil et al., 2012 IEEE NSS, N1-231
A double-sided pixelated LGAD

- Pixel side is simple, gain side quite complex (4 doping steps)
- Plan: start from thick 6” wafers (275 µm) before going thinner (100 µm)
- TCAD simulations to predict the performance
TCAD (1): Electrical parameters

- Simulation results scaled to 50x50 µm² pixels
- Strong impact of the B dose on the breakdown voltage
- Comparison at similar breakdown voltage
- Two-phase depletion behavior observed in both C-V and I-V
TCAD (2): Gain and noise

- Simulated with mip (Heavy Ion Model) in cylindrical coordinates
- Gain defined as ratio of integral charge with/without avalanche
- Similar gain at high voltage (~15) but with quite different trend

Excess noise factor can be fit with:

\[F = M \cdot k + \left(2 - \frac{1}{M} \right) \cdot (1 - k) \]

\[k = \frac{\alpha_p}{\alpha_n} \text{ – ionization ratio} \]

R.J. McIntyre, IEEE TED 13 (1966) 164
TCAD (3): Signals

- Current pulses in response to a mip (cylindrical coordinates) at different voltages
- Pulse duration dominated by drift of multiplied holes, thus proportional to the substrate thickness
- Impact of segmentation (weighting field): significant delay for 275 µm, much smaller for 100 µm
• Fast timing circuits might be difficult to embed in small pixels
• But different functions could be divided between the two sides:
 - Position measurement from the small pixel side
 - Time measurement from the gain side → capacitance is an issue
• Segmentation of the gain side (macro – pixels, ~1mm², ~1pF)
Segmentation of the gain side

- Same technology, different layout
- Acceptable efficiency reduction from macro-pixel edges (~5%)
- It can work safely up to >1200V before breakdown
Outline

• Introduction:
 – Avalanche PhotoDiodes (APDs)

• Low Gain Avalanche Detector (LGAD)
 – From pads to pixels
 – Proposed double-sided sensor
 – Simulated performance

• CMOS Avalanche PhotoDiodes
 – Experimental results for standard 0.15µm CMOS
 – Gain and noise modeling

• Conclusions
APD integration in CMOS

• Significant results in the past ten years
• Mainly driven by telecom receivers, but increasing interest also for imaging
• Advantages:
 – Integrated electronics: low parasitics, low costs
 – Array fabrication possible
• Challenges:
 – Guard ring fabrication
 – Doping profiles not optimized for low noise and high quantum efficiency
p+/nwell APD in 0.15µm CMOS

- Shallow junction ~ 0.2µm
- p-sub low-doped guard ring
- Active region: p+/nwell junction

APD active region can be approximated with an abrupt junction
pwell/n-iso APD in 0.15µm CMOS

L. Pancheri et al., IEEE EDL 35 (2014) 566

APD active region can be approximated with a linearly graded junction

- Deep junction > 1µm
- p-sub low-doped guard ring
- Active region: pwell/n-iso junction
Gain vs Voltage

$p+/nwell$

$V_B = 16.1\, V, \sigma = 90\, mV$

$V_B = 23.1\, V, \sigma = 260\, mV$

Multiplication gain, M

Reverse voltage [V]

Multiplication gain, M

Reverse voltage [V]
Quantum Efficiency

Better in the UV and blue

Better in the NIR

In both cases interference fringes due to non optimized optical stack (no ARC)
Excess Noise Factor

- UV light: electron-initiated avalanche
- NIR light: mixed – majority of hole injection

- UV light: electron-initiated avalanche
- NIR light: mixed – majority of electron injection
Ionization Rate Models

1) Local model:
\(\alpha \) depends only on the electric field \(E \)

Local model: McIntyre, IEEE TED, 1966
Ion. rates: Okuto and Crowell, SSE, 1975

2) Non-local model:
- The electron needs to acquire energy from \(E \) before being able to cause impact ionization
- \(\alpha \) depends on electric field \(E \) and position \(x \)

3) Simplified non-local model:
- Dead-space \(d_e \) defines a sharp transition
- \(d_e \) proportional to ionization threshold energy

Non-local (dead-space) model: Hayat et al., IEEE JQE, 1992
F vs M: model comparison

- Local model not suitable due to high electric field and narrow space-charge regions
- Very good agreement with non-local models for electron-initiated avalanche
F vs M: non-local model

- Also non-local model with hole-initiated avalanche overestimates F
- Good agreement with NIR approximation (mixed injection) with X_j as a fitting parameter
Conclusions

1) Design options for pixelated LGADs were reported
 - TCAD simulations have been used to predict the sensor performance with encouraging results

2) Low-noise APDs can be integrated in CMOS processes
 - Good uniformity → Arrays are feasible
 - Non-local ionization models can yield an accurate excess noise predictions

Acknowledgement

This work has been supported in part by INFN CSN5, project UFSD, and by the Autonomous Province of Trento and INFN under the framework agreement “MEMS3”