Development of novel 3D silicon microdosimeters at IMB-CNM

Celeste Fleta
On behalf of the Radiation Detectors Group
Instituto de Microelectrónica de Barcelona, Spain
Microdosimetry

- Measure energy deposition in microscopic (cellular) volumes
- Applications:
 - treatment planning in hadrontherapy;
 - biological risk assessment for radiation-exposed people;
 - microelectronics (SEUs)

Why silicon?

- Ability to produce tailor-made micrometer-scale structures using micromachining techniques.
- Do not require a gas supply
- Light, shock-resistant and easily portable
- Low bias and power consumption
- Fast response and low dead times
- Well established technology – mass-production

HeLa cell (700 μm³)

Unit cell (minimum sensitive volume) of sensor

\[V_{\text{cell}} \approx V_{\text{microsensor}} \]
Version 1: Ultra-thin 3D silicon detectors

- **3D diode sensors based on SOI wafers**, with passing through columnar electrodes
- **Technology developed and patented by CNM in 2009**
- Originally developed for neutron detection\(^1\) and plasma diagnostics\(^2\)
- Advantages for microdosimetry:
 - \(\mu\)m-thin active volume, well defined
 - Reduced charge sharing due to the confinement of the electric field
 - Support wafer can be removed to avoid backscattered particles
 - Lateral depletion, few V operation
 - Easy pixellation for spatial resolution

2. F. Garcia et al., *IEEE NSS-MIC* (2011) 199
Design and fabrication

- Design and fabrication done in-house at IMB-CNM
- Columnar electrodes 5 µm diameter
- SOI wafer 10 µm active thickness

Fabrication sequence:

1. Electrode fabrication
 - ICP etching with ALCATEL 601-E
 - Filled with LPCVD polysilicon
 - Doped with P or B
 - Passivated with SiO₂
2. Same type electrodes connected by metal lines for electrical contact
3. Surface passivation with SiO₂/Si₃N₄
4. Support wafer etch (optional)
Development of novel 3D silicon microdosimeters

Support wafer (frame)

10 μm ‘membrane’ (sensitive volume)

4” wafer

Symposium “Advanced Semiconductor Detectors for Medical Applications”, 13th February 2015
Validation with carbon beam

- 12C 95 MeV/A beam @ Ganil
- Measurement of the spectra and Bragg curve with depth of PMMA
Pulse height spectra in the PMMA along the Bragg curve

- 10 μm thick sensor, 1x1 mm² area, 0V bias
- 12C energy 95MeV/A, range 25mm in PMMA
Bragg curve: measured vs Geant4
New generation microdosimeters

- Use IMB-CNMs’s 3D-thin technology to create **micrometer-scale cylindrical structures** that completely confine the active volume – “cell-like”
- P+ implanted electrode surrounded by N+ cylindrical 3D electrode (trench)
- SOI wafer with backside removed
- Array of independent active volumes with individual (pixel) or serial (strip) readout – **spatial resolution**
Fabricated devices: 6, 10, 20 µm thick

P-contact

N-contact

Active diameter (10µm)
Development of novel 3D silicon microdosimeters

Symposium “Advanced Semiconductor Detectors for Medical Applications”, 13th February 2015
Electrical test

- 6µm wafer
- Arrays of 100x100 pixels
- Good diode behaviour
- <pA/pixel currents
CCE characterization

CNA @ Seville, this week

IBIC map with 5MeV alphas

Counts in full E peak (100% CCE) vs position

100% yield in sensor
Summary

- IMB-CNM’s ultra-thin 3D technology is able to produce micrometer-scale radiation sensors on thin silicon substrates.
- A first generation of 10 µm thin, 3D silicon sensors with columnar electrodes has been validated in a microdosimetry experiment, measuring accurately the LET distribution of 12C ions in PMMA even at 0V bias.
- A new generation of cylindrical 3D silicon structures that confine completely the active volume have been successfully manufactured. First tests with alpha particles show 100% CCE in sensor area.