

Detection of laser-accelerated ions

S. Reinhardt

Department of Medical Physics, LMU München

LEX/CALA: infrastructure

Setup at LEX Photonics

Laser-Beam Delivery

lon source: ready to rep-rate

Laser-driven ion acceleration

- Laser-Pulses accelerate ions to MeV/u over several µm's within less than 1 picosecond
- Large ion number in very short time and typically very broad spectrum
- So far mostly single shot/proof of principle experiments

Laser-driven ion acceleration

Target Normal Sheath Acceleration (TNSA)

micrometer thick foils

Maximum proton energies ~ 60 MeV Snavely, PRL (2000)

Radiation Pressure Acceleration (RPA)

nanometer thick foils

record carbon energy > 1 GeV

A.Henig et al., Phys Rev. Lett. 103,245003 (2009):1st experimental demonstration of RPA

D. Jung et al., Phys. Plasmas 20, 083103 (2013):

Detection of laser-accelerated ions

MU Inductions In

TNSA

RPA

A. Henig et al, PRL 103 (2009)

• Ultra-short (<= ns) and

highly intense (> 10⁷ ions/cm²) ion pulses

- EMP presence
- Mixed radiation background
- Large energy spread of ions

→ Challenge for any electronic online detector but also dosimetry

 Table 1. Detectors commonly used for laser-driven ion diagnostics and measurements. Sensitivity: L: light, UV: ultraviolet, x: x-rays, e-: electrons; the notation '•' represents 'sensitive'.

		Time	Treatment/	Single- particle	Dynamic	Sen	sitivity	23	
	Spatial resolution	resolution	display time	sensitivity	range (DR)	Г Г	IV, X e	7	Features/refs
Solid-state nuclear	~ a few to a few	No	A few hours	Yes	$\sim 10^{2} - 10^{6}$		100 100	Ĩ	(1) Sensitive to
track detectors,	tens of μm (pit		(etching,		(background				ions only ^a ,
e.g. CR-39 (allyl dielvcol	size, depends on the ion kind and		scanning, pit counting)		$\sim 10^2 - 10^4 \text{cm}^{-2}$.				single particles
carbonate), etc	energy and etching time)		ò		saturation $\sim 10^6$ - 10 ⁶				
Radiochromic film	~3–10 µm (film,	No	Several minutes	No	$\sim 10^2 - 10^3$	•			(2) Self-
(RCF)	scanner)		(scanning)		(e.g. 10-10 ⁴ Gy)				developing
Imaging plate	Sub-100 μm	No	Several minutes	No	~105	•			(3) Reusable,
	(scanner)		(scanning)					8	nign DK
Activation	Sub-mm (contact	No	Tens of	No	Very high	ļ	्र व	Ĭ	(4) Very high
	radiography)		minutes-a few		(>10 ⁵)				DR
			hours (decay time)						
Micro-channel	~several 10 s of	~a few	~a few seconds	Yes	$\sim 10^{3}$	•	•		(5) Online,
plate	μ m (imaging	100 ps	(CCD readout)						single
(MCP)+phosphor screen + CCD	system)	(MCP gate time)							particles
Scintillator + gated	~several 100 µm	~a few	~a few seconds	No	$\sim 10^{3}$	•			(6) Online,
1-CCD or	(multiple	100 ps	(CCD readout)						stackable in
EM-CCD	scattering,	(scintillation							depth
	imaging system)	time)							

Advantages of pixel detectors

- ✓ real time measurement
- ✓ excellent spatial resolution
- \checkmark good energy resolution

 10^8 particles / cm² = 1 particle / μ m²

Munich Tandem Accelerator

Unique possibilities to test detector response:

- protons: 8- 25 MeV
- 3 irradiation modes:
 - single particle
 - continuous
 - pulsed: 10⁷ protons /cm²/ ns
 - → similar to laser ion pulse

Investigated detector systems:

- Kappa DX-4 (commercial system)
- Timepix

- (scientific & commercial system)
 - ➤ collaboration with IAEP CTU Prague
- RadEye (commercial system)

Detector system

RadEye 1 sensor
Silicon pixel detector
512 x 1024 pixel
48 μm pixel pitch
25 x 50 mm² sensitive area

Read-out electronics

Parallel read-out of 4 sensor modules 50 x 100 mm² sensitive area

Compact stand-alone system combines computer control and read-out electronics

Single proton sensitivity

Munich 14 MV Tandem accelerator

- continuous beam
- 15 MeV protons
- ~ 10⁴p/cm²/s

Cluster pixel distribution:

✓ No charge sharing effects observed

 ✓ Single and double hits can be distinguished

- 20 MeV protons
- 10⁴ **10⁷ p/cm²/ns**

No saturation observed

Good agreement to continuous measurements

System ready for laser-ion-acceleration experiment !

Energy conversion:

1.11 +/- 0.09 ADU/keV

LEX LION Diagnostic

4°

- → simultaneous detection of protons and $^{6+}$ C-ions
- \rightarrow 10% accuracy in particle number determination possible

S. Reinhardt et al., Journal of Instrumentation 8, 03008 (2013)

Dosimetry of laser-accelerated ions

MAP main goal: Radiation therapy with laser-accelerated ions

Main idea: Exploit broad energy spectrum to generate SOBP

Characteristics of laser-accelerated proton (ion) beams

A. Henig et al, PRL 103 (2009)

- Ultra-short (<= ns) and
 - highly intense (> 10⁷ ions/cm²)

ion pulses

- EMP presence
- Mixed radiation background
- Large energy spread of ions
- → Challenge for dosimetric measurements
- → Investigation of biological response required

Dosimetry of laseraccelerated ions

MAP: Radiation therapy with laser-accelerated ions

- → Bio-medical studies at LEX/CALA → **Dosimetry**
- > Special dosimetric application
 - high pulse dose rate (> Gy/ns)
 - Low energies
 (protons < 20 30 MeV @ LEX)
- Development of *film dosimetry* protocol: Radiochromic EBT2/EBT3
- Application in cell and mouse tumour irradiation

Gafchromic EBT film

Polyester Laminate - 50 microns

Adhesive Layer - 25 microns

Topcoat - 4.5±0.5 microns Active Layer - 30±3 microns

Polyester Base - 175 microns

EBT2

same active layer

Lithium pentacosa-10,12-diynoate (LiPCDA)

but **symmetric** configuration

Matte Polyester Substrate - 125 micronsActive Layer - 27±3 micronsMatte Polyester Substrate - 125 microns

✓ Dose range: 0.2 - 40 Gy

- ✓ Water-equivalent
- ✓ Sub-mm spatial resolution
- ✓ 2D read-out by RGB flatbed

scanner

 \checkmark Self-developing by polymerization

Film dosimetry in proton beams

LUDWIG-MAXIMILIANS-

UNIVERSITÄT MÜNCHEN

Problem:

- dose under-response in Bragg Peak region (high LET)
- > already known from other radiochromic films
- S. Reinhardt et al, Med. Phys. 39 (2012)
- S. Reinhardt et al, Rad Env Biophys (2015) DOI 10.1007/s00411-014-0581-2

EBT2 vs. EBT3:

No general response difference

- No particle type dependence
 - \blacktriangleright difference photons-protons < 3.0 %
- Intra-batch variations < 2.5%
- < 11.5 % Batch-to-batch variations

MAXIMILIANS-UNIVERSITAT MÜNCHEN MONCHEN MONCHEN

- RBE Difference due to irradiation mode? (continuous vs. pulsed)
- 23 MeV protons:

< 6 mm range in water

- spatial dose distribution required
 - → Gafchromic EBT2 films for fluence measurements
- *PTV dose: 20 Gy*, using 5 fluences
 → dose range on film: 0.54 Gy 4.00 Gy

Mouse tumour irradiationat MAXIMILIANSthe MLL Tandem accelerato UNIVERSITÄT MÜNCHEN

Our in vitro and in vivo studies showed no evidence of a substantially different radiobiology associated with the ultra-high dose rate that characterizes protons generated from advanced laser technology.

We conclude that dose prescription for pulsed protons can be based on established therapeutic concepts for protons. However, one should bear in mind that differences in the RBE values smaller than 10% cannot be excluded vet and should be accounted for in dose constraints for organs at risk.

O. Zlobinskava et al, Rad Res 181(2014)

RBE values:

pulsed beam 1.22 ± 0.19

LUDWIG-

LMU

continuous beam 1.10 ± 0.18

J. Bin et al, APL 101 (2012)

Delivery of single shot doses up to 7 Gy to living cells (HeLa)

LMU

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

MPQ cell irradiation experiment 3.1 MeV protons @ active film layer

- considerable LET dependence
- Iow energy calibration required

Cell irradiation at the MPQ ATLAS laser

J. Bin et al, APL 101 (2012)

FIG. 5. Initial DNA damage in HeLa cells. (a) Sample exposed to a mean dose of 1.0 Gy and (b) corresponding unirradiated control. Foci of γ -H2AX (red) and cell nuclei (blue) are shown (3D microscopy, maximum intensity projections, background correction, contrast enhanced). The red vertical bars in (a) are part of the grid used for spatial registration (Fig. 4). Horizontal scale bars, 10 μ m.

Irradiation of HeLa cells:

LUDWIG-MAXIMILIANS-

UNIVERSITÄT MÜNCHEN

RBE for induction of repari foci 1.3 ± 0.3

No new radiobiogolical effects by single high pulse dose rate $\sim 10^9 \frac{Gy}{s}$

Gafchromic films

- EBT3 and EBT2 show similar performance
- Film dosimetry in low energy proton beams possible

RadEye-Detector

- Single proton sensitivity
- Limited energy resolution
- Sufficient radiation hardness
- Linear pulse dose response up to 10⁷ p/cm²

Outlook

- > RadEye in routine use for laser accelerated ion detection in LEX
- New detector developments required for ion detection in CALA
- > Online dosimetry required for future experiments in LEX/CALA

Department of Medical Physics, LMU

A. Alhazmi, W. Assmann, R. Berger, G. Dedes, A. Mayr, S. Reinhardt, J. Schreiber, K. Parodi

Thank You !

