

- Motivation: need for accurate ion beam range verification
- Method: prompt-γ imaging via Compton scattering kinematics R&D on Compton camera (with electron tracking capability)
- Design, setup and characterization of prototype detector system

Prompt gamma emission from proton beam on biomedical sample

- key issue in hadron therapy:
 - localization of Bragg peak within patient/sample
 - → range verification of therapeutic proton (or ion) beam

16

 experimental approach: imaging via prompt γ emission from nuclear reactions irradiation of water phantom with 100 MeV protons:

Treatment beam

exploit kinematics of Compton scattering:

$$\cos\theta = 1 - m_e c^2 \left(\frac{1}{E_2} - \frac{1}{E_1}\right)$$

(i) γ tracking:

LMU

- reconstruction of incompletely absorbed events
- \rightarrow increased reconstruction efficiency

= 10

y (cm

Compton camera layout:

C. Lang et al., JINST 9 (2014) P01008, PhD thesis in preparation

simulations for tracker/absorber specifications and expected performance:

- d=500 μ m + electron tracking: \rightarrow improved efficiency

- $6x6 \text{ mm}^2 \rightarrow 3x3 \text{ mm}^2 \text{ pixel}$:
- spatial resolution improves by \geq 50 %
- $\varepsilon \approx 10^{-3} 10^{-5}$ (@ 1- 5 MeV for optimum resolution)
- angular resolution $\approx 2^{\circ} 2.5^{\circ}$ (@ 2-6 MeV)

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

<u>Compton Camera Prototype:</u> <u>Scatter/Tracker Array</u>

- Scatterer/Tracker Array:
- 6x double-sided silicon strip detectors (DSSSD)
- \rightarrow active area 50 x 50 mm²
- \rightarrow thickness : 500 μ m
- \rightarrow 128 strips on each side
- \rightarrow pitch size 390 μ m

→ replacement by modern ASIC desirable: wider dynamics, trigger, more flexibility (monitor)

S. Aldawood, PhD thesis, in preparation

8

<u>Compton Camera Prototype:</u> <u>Scatter/Tracker Array</u>

- light tight enclosure
- Faraday cage (+ ventilation, thermal control)

S. Aldawood, PhD thesis, in preparation

LUDWIG-

LMU

MAXIMILIANS

UNIVERSITÄT MÜNCHEN

Compton Camera Prototype

Absorber:

PMT LaBr₃

LaBr₃ crystal: 50 x 50 x 30 mm³ PMT: Hamamatsu H9500 (multi-anode: 16x16):

- signal processing:
 - 256 pixel (3x3 mm²)
 - individual spectroscopy electronics channels

S. Aldawood, PhD thesis, in preparation

- → fast amplifier + CFD (Mesytec MCFD-16, 16 ch.)
- → charge-sensitive digital converter (Mesytec, 32 ch. VME-QDC)

10

• energy resolution:
$$\langle \Delta E/E \rangle = 3.8\% @ 662 \text{ keV} (^{137}\text{Cs})$$

H. v.d. Kolff, Master thesis, TU Delft/LMU (2014)

High-Energy Calibration

- Experiment at Tandetron (HZDR, Dresden/Rossendorf):
 - low energy (~1 MeV) protons
 - E_{γ} =4.44 MeV via ¹⁵N(p, $\alpha\gamma$)¹²C

ightarrow validation of MC simulations

S. Aldawood, PhD thesis, in preparation

Scatter/Tracker Array

- energy deposition in 6 DSSSD layers: $E_{\gamma} = 4.4 \text{ MeV}$
 - from simulation: increasing yield from front- to backside layers (accumulating contributions from Compton electrons)

 \rightarrow simulations verified

S. Aldawood, PhD thesis, in preparation

Commissioning at Garching MAXIMILIANS **Tandem Accelerator** UNIVERSITÄT

20 MeV protons + water phantom: prompt- γ spectrum

LUDWIG-

MÜNCHEN

I. Castelhano, Master thesis, U Lisbon/LMU, 2014

LaBr₃ detector properties: Spatial resolution

- spatial resolution:
 - collimated γ source (Ø 1 mm): ¹³⁷Cs (662 keV, ca. 100 MBq)

data analysis:

- background correction
- gain matching/uniformity correction: electronics, PMT
 - \rightarrow "k-nearest neighbour" algorithm (TU Delft)
 - \rightarrow derive position information from monolithic crystal

H.T. van Dam et al., IEEE TNS 58 (2011) 2139

<u>LaBr₃ detector properties:</u> <u>Spatial resolution</u>

- light amplitude distribution maps:
 - 2D scan with collimated ¹³⁷Cs source
 - irradiation of 16x16 pixels (3x3 mm²)

 goal: 10⁴ maps as reference data set (0.5 mm collimation, 0.5 mm step size) γ hit position identification via 'k-NN': (preliminary, not yet full resolution)

T. Marinšek, Master thesis, LMU, in preparation

16 S. Aldawood, PhD thesis y Multiun preparation Semiconductor Detectors for Medical Applications, Garching, 13.2.2015

• γ -PET technique: reconstruct triple-coincidences from $\beta^+\gamma$ emitters

C. Lang et al., JINST 9 (2014) P01008, PhD thesis in preparation

- \rightarrow prompt- γ detection during irradiation
- \rightarrow delayed photons from β^+ (γ) emitters (^{11,10}C, ^{15,14}O, ¹³N) during irradiation interrupts

- Compton camera prototype for prompt-gamma range monitoring:
 - prototype characterized off- and online:
 - absorber:

LaBr₃ with multi-anode PMT: $\Delta E/E = 3.8\%$, $\Delta t= 270$ ps spatial characterization (k-NN method) in progress

 \rightarrow prerequisite of source reconstruction (MEGAlib)

- scatterer/tracker:

6x DSSSD (500 μm, 50x50 mm², 2x128 ch.)

- online characterization: Garching ($E_p = 20 \text{ MeV}$), Dresden ($E_{\gamma} = 4.4 \text{ MeV}$)
- verification of model simulations
- Perspective: hybrid detector system
 - prompt- γ detection during irradiation
 - delayed photons from β^+ (γ) emitters (^{11,10}C, ^{15,14}O, ¹³N) during irradiation interrupts

- LMU Munich: C. Lang, S. Aldawood, I. Castelhano, H. v.d. Kolff, S. Liprandi, B. Tegetmeyer, G. Dedes, R. Lutter, J. Bortfeldt, K. Parodi
- TU Munich: L. Maier, M. Böhmer, R. Gernhäuser
- OncoRay/ HZDR, Dresden: G. Pausch, K. Römer, J. Petzoldt, F. Fiedler
- TU Delft: D.R. Schaart

Supported by DFG Cluster of Excellence MAP (Munich-Centre for Advanced Photonics)

Thank you for your attention !