Intense, pulsed ion beams for studies of defect dynamics and materials processing very far from equilibrium

Thomas Schenkel, Jianhui Bin, Sven Steinke, Qing Ji, Stepan Bulanov, Jaehong Park, Arun Persaud

Accelerator Technology & Applied Physics Division, Lawrence Berkeley National Laboratory

SPIE, Applying Laser-driven Particle Acceleration Workshop: Using Distinctive Energetic Particle and Photon Sources, Tue. – Wed. 2 - 3 April 2019 – Prague

This work is supported by Laboratory Directed Research and Development (LDRD) funding from Lawrence Berkeley National Laboratory, provided by the Director, Office of Science, Fusion Energy Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. J.H.B acknowledge financial support from the Alexander von Humboldt Foundation. This work as in part supported by Sandia National Lab, and by an IAEA Collaborative Research Project.
Intense, short ion pulses are a unique tools for (bio)-materials science, studies of phase-transitions and warm-dense matter research.

Lower intensities:
- defect dynamics in materials
 - isolated cascades
 - overlapping cascades

Higher intensities:
- phase transitions and warm dense matter
 - amorphization and melting
 - warm (~1 eV), dense matter

- Short ion pulses enable access to dynamics of rad effects experiments
- Intense ion pulses enable access to phase transitions, materials processing far from equilibrium and warm dense matter with uniformly heated materials

Outline

1. Accelerators for intense, short ion pulses
 1. Induction linac, NDCX-II
 2. Laser-plasma acceleration, BELLA

2. Experiments with ion pulses at Berkeley Lab
 1. Defect dynamics
 2. Materials processing and color center synthesis
 3. Phase transitions
1. Accelerators for intense, short ion pulses
 1. Induction linac, NDCX-II
 2. Laser-plasma acceleration, BELLA

2. Experiments with ion pulses at Berkeley Lab
 1. Defect dynamics
 2. Materials processing and color center synthesis
 3. Phase transitions
Intense, pulsed ion beams by neutralized drift compression in an induction linac – NDCX-II

- NDCX-II at Berkeley Lab

- 1.1 MeV (He⁺), 12 nC (7.5x10¹⁰ ions), 13 mJ
- Routinely ~5x10¹¹ ions/cm²/pulse

- Pulse length: 2 to 10 ns, spot size ~1 to 5 mm radius, 1 MeV protons, He⁺, Li⁺, ...
- Peak current: ~0.1 to 2 A
- Repetition rate ~1 shot / minute

Pulses of 1 MeV protons from NDCX-II

- Proton pulses with peak currents of 0.1 to 1 A, 10 to 20 ns FWHM, ~1 to 5E10 protons/pulse (to date)
- The proton energy is 1 MeV with a range in silicon of 16 um.
We use the BELLA PW laser to form pulses of high energy electrons (GeV) and ions (MeV)

- BELLA – 1 PW at 1 Hz
- 40 J, 33 fs, ~2x10^{19} W/cm²

- The BELLA Center is part of a network of collaborative user facilities, LaserNetUS (www.LaserNetUS.org)

- Contacts:
 - T_Schenkel@LBL.gov
 - CGRGeddes@lbl.gov

BELLA overview:

Ion acceleration at BELLA-i

- Charge states up to \(\text{Ti}^{11+}, \text{C}^{5+}, \text{O}^{6+} \)
- \(\sim 10^{12} \) total number of MeV ions (from Thomson parabola) and \(>10^{13} \) lower energy ions (from ex situ sample analysis by Secondary Ion Mass Spectrometry, SIMS)
- Ti tape drive target for extended 1 Hz operation
Setup for laser ion acceleration at 1 Hz with samples 3 cm from the laser target

• Distance of laser-target to ion-target now 3 cm for proton fluences of 5 to 10 J/cm² /shot with sub-ns pulses

Target wheel for samples to be hit by ions

Laser pulse

Tape drive for laser targets, e.g. Kapton (shown) or titanium, ~2–10 micron thick

Thomson parabola spectra of protons and carbon ions from a Kapton tape laser target
1. Techniques to form intense, short ion pulses
 1. Induction linac, NDCX-II
 2. Laser-plasma acceleration, BELLA

2. Experiments with ion pulses at Berkeley Lab
 1. Defect dynamics
 2. Materials processing
 3. Phase transitions
Motivation: Understanding the dynamics of radiation induced defects in solids

- Defects affect materials properties
 - Desired properties (e.g. optical, electrical, ...)
 - Undesired properties (e.g. mechanical failure, ...)
- Defect dynamics is a multi-scale problem (ps to years)
- Probes of defect dynamics on different time scales can inform the development of optimized materials and benchmark simulation models

Efficient Annealing of Radiation Damage Near Grain Boundaries via Interstitial Emission

Effects of low-energy electron irradiation on formation of nitrogen–vacancy centers in single crystal diamond
NV-centers form during local exposure to low energy electrons at room temperature

- confocal PL image of NV$^-$ centers (635–642 nm) at room temperature, recorded following exposure of 1 μm squares to a 9 pA, 2 keV electron beam. Insets show locally auto-scaled spots.

- **local activation enables iterative formation of NV$^-$ in arrays**

 - Note: activation of NV0 centers in diamond by low energy electrons and high energy ions was reported already in the 70s and 80s (see A. M. Zaitsev, 2001)
What are mechanisms of NV-formation?

\[N_{\text{substitutional}} + V \rightarrow NV^0,^- \]

vs.

\[N_{\text{interstitial}} + V_n \rightarrow NV^0,^- \]

J. Schwartz, et al., NJP 2012, JAP 2014

- A nitrogen atom on a split interstitial site (blue), close to two vacancies (black). Carbon atoms in yellow. NV’s form during annealing at >300 °C
 - J. Adler, R. Kalish, et al., J. of Physics, 2014
 - P. Deak et al. PRB 2014: di-vacancy formation favored over NV formation during annealing of N rich diamond after vacancy producing irradiation
Short ion pulses enable access to the dynamics of radiation effects in pump-probe type experiments.

Allen, et al. NIM B 244, 323 ('06)
Time resolved detection of ion transmission through single crystal silicon membranes

- 1 µm thick, Si (100)

Faraday Cup, ~2 ns time resolution
Order-disorder transition can be tracked \textit{in situ} with ion channeling during short ion pulses.

1 μm Silicon membrane $E_0=287$ keV

- T. Schenkel et al., NIM B 315 (2013) 350
1. Techniques to form intense, short ion pulses
 1. Induction linac, NDCX-II
 2. Laser-plasma acceleration, BELLA

2. Experiments with ion pulses at Berkeley Lab
 1. Defect dynamics
 2. Materials processing
 3. Phase transitions
Materials processing – limits of conventional annealing

- Bismuth doped 28Si enabled the recent demonstrations of the Purcell effect with spins
- But only ~60% of the bismuth atoms were electrically active after conventional processing

→ Excite materials locally with intense, pulsed ion beams and rapidly quench to stabilize the novel phase

First pulsed implantation of SiC with ion pulses from BELLA-i

- 1 J/cm\(^2\), 1 ns, ~1000 °C
- Ion pulse, 10 cm
- 50 um spot, ~40 J/30 fs, Ti foil, 1 to 5 um
- Si, SiC, GaAs transistor

5x10\(^{13}\) Ti/cm\(^2\)/shot near surface

- Channeling - RBS, Ryan Thorpe, Rutgers
- Photoluminescence
- SIMS: 10e15 atoms/cm\(^2\) (10 nm), 30e15 atoms/cm\(^2\) (3 nm), =400 keV
Exposure of semiconductor samples to proton pulses with ~1 to 10 J/cm² and PW laser shot rates up to 0.2 Hz – analysis in progress

- next step - focusing of ions onto a second target with a plasma lens - in progress
1. Techniques to form intense, short ion pulses
 1. Induction linac, NDCX-II
 2. Laser-plasma acceleration, BELLA

2. Experiments with ion pulses at Berkeley Lab
 1. Defect dynamics
 2. Materials processing
 3. Phase transitions
Intense ion pulses enable isochoric heating of materials for studies of warm dense matter

Heating of thin tin foils (300 nm) with a short-pulse helium beam

HYDRA simulations show heating to warm dense matter by protons and carbon ions with ion pulse parameters in reach at BELLA

Target: 50 µm Au foil
Beam: 0.25 mm radius (Gaussian); 3 ns full width
7.5 MeV proton beam, Central fluence 480 J/cm²

Target: 1.5 µm Au foil
Beam: 0.25 mm radius (Gaussian); 3 ns full width
7.5 MeV Carbon beam, Central fluence 480 J/cm²

simulations by J. J. Barnard, LLNL
Intense, short ion pulses are a unique tool for (bio)-materials science, studies of phase-transitions and warm-dense matter research.

Lower intensities:
- Defect dynamics in materials

Higher intensities:
- Phase transitions and warm dense matter

- **Short** ion pulses enable access to dynamics of rad effects
- **Intense** ion pulses enable access to phase transitions, materials processing far from equilibrium and warm dense matter with uniformly heated materials