Diagnostics and Control of Laser accelerated Ion Beams

Markus Roth Institute for Nuclear Physics Technische Universität Darmstadt

Content

- ★ Experiments
 - *Capture and control
 - \star Ion Species
 - *Mass limited Targets
 - *Apollo Targets
- ★Target Fab
- ★Diagnostics
 - *Nuclear Activation for the Electrons
 - *****RIS
 - ★Limits of RCF
 - *****NAIS
 - *****Diamond Detectors

Motivation

- Leading expertise in both fields (laser acceleration, accelerator technology) available at GSI, surrounding universities, and HIJ
- Optimal use of lase accelerated ions rebeam forming, energies selection and debu
- Z6 target area prov and to accelerator diagnostics)

Transfer Beam Z6 Target SIS Line Area PHELIX Energy imental Area Targe ent,

We can provide a versatile testbed to study laser-accelerated particles in conventional accelerator structures

HELMHOLTZ

GSI

Experimental area Z6

TECHNISCHE UNIVERSITÄT DARMSTADT

Tools: Unilac ion beam:

3<Z<92, E = 3 - 11 MeV/u, 108/36 MHz, Dt_{ion} = 3 ns (FWHM)

nhelix laser beam: diagnostics
 ✓100 J @ 6–14 ns
 ✓5 J @ 0.5 ns
 (Thomson scattering)
 ✓ <1 mJ @ 0.5ns
 (interferometry)

Phelix laser beam: heating

- ✓1 kJ @ 1–15 ns
- ✓ 50 J @ 0.5-2 ps =>100 TW (compressed 12 cm beam)
- ✓ 150 J @ 700 ps (chirped short pulse)

Laser Ion Generation Handling and Transport LIGHT @ GSI

seit 1558

Timeline

HELMHOLTZ

GSI

2010

- Compressor setup
- Beamlines
- 100 TW pulses in target chamber
- First acceleration experiments

2011

- Collimation and ion beam shaping
- Proton pulse diagnostics
- Test of rebuncher structure with UNILAC proton beam

2012

- Injection into
 rebuncher structure
- Injection into postacceleration structure

beyond

- Laser acceleration experiments with higher repetition rate at JETI, POLARIS, DRACO and PHELIX
- Possibility to inject into SIS 18
- Higher repetition rate at Z6

HELMHOLTZ

Institut Jena

6

Upcoming project report

Draft of the Project Report

"Laser Ion Acceleration Test Stand at GSI"

Collaboration partners

Technische Universität Darmstadt¹ GSI Helmholtzzentrum für Schwerionenforschung Darmstadt² Institut für Angewandte Physik der Universität Frankfurt³ Helmholtz-Institut Jena⁴ Forschungszentrum Dresden-Rossendorf⁵

Contributors

A. Almomani³, V. Bagnoud^{2,4}, W. Barth², A. Blazevic², T. Burris⁵, T. Cowan⁵, M. Droba³, H. Eickhoff², P. Forck², K. Harres¹, I. Hofmann², O. Jäckel⁴, M. Kaluza⁴, F. Nürnberg¹, A. Orzhekhovskaya², G. Paulus⁴, U. Ratzinger³, C. Rödel⁴, M. Roth (project leader)¹, T. Stöhlker^{2,4}, A. Tauschwitz², W. Vinzenz², S. Yaramishev², B. Zielbauer (project coordinator, editor)⁴

HELMHOLTZ

GSI

LET THERE BE LIGHT

UNIVERSITÄT

Capture of laser-accelerated proton beams with a solenoidal magnetic field

Experiment at Phelix/GSI (top):

- (left) setup target chamber
- (middle) solenoid version 2
- *(right)* proton signal in RCF detector stack (contrast optimized for the last 3 layers)

Warp PIC simulations (bottom):

- *(right)* simulated proton signal in virtual RCF detector stack,
- (middle) proton trajectories for collimation
- *(left)* proton trajectories for focussing

M. Schollmeier, M. Geissel, A.B. Sefkow, M.W. Kimmel, P. Rambo, J. Schwarz and B.W. Atherton¹

O. Deppert, G. Schaumann, M. Roth²

A. Arefiev, B. Breizman³

¹Sandia National Laboratories, Albuquerque, NM ²Technische Universität Darmstadt, Germany ³University of Texas at Austin

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-4AL85000.

150 TW laser

RCF detector

25 µm Cu target

Concept

2D PIC simulations: real space

collaboration with TU Darmstadt, Germany

New target designs can lead to much higher performance and even target compression paving the way to dense matter

Target Production

Experiments with cryogenic targets

temperature: 9-14 K
density: 0,202 g/cm³
growth time: 20-40 min
thickness: 0,5-1 mm (2µm planned)
diameter: 2 mm

Characterization of high-energy bremsstrahlung and electrons

- Compound target as a pseudo alloy: composition of several stable elements with different photon-neutron disintegration thresholds
- Large energy range accessible:
 - 7 20 MeV via (γ,n)-reaction
 - 7 50 MeV via (γ,xn)-reaction
- All components close to laser-plasma interaction zone
- High mass density (13 g/cm³)
- Suitable half-lives for all isotopes

Radiochromatic film imaging spectroscopy (RIS)

RIS allows for extraction of

- spectrum
- energy conversion efficiency
- energy-resolved opening angle
- energy-resolved source size
- energy-resolved beam profile
- transverse emittance
- \rightarrow in a single shot

HELMHOLTZ GEMEINSCHAFT

Proton energy (MeV)

Limitation of RIS

Problem appeared at Vulcan laser facility of the Rutherford Appleton Laboratory (UK):

- Target: Titanium foil of 10 µm thickness
- Laser: 194.4 J@18 ps on target, focus diameter 10 µm
- RCF to target distance: 26 mm

High proton flux in high-power laser-proton-acceleration leads to saturation or disintegration of the RCF

Nuclear activation imaging spectroscopy (NAIS)

A detector system for ion beams at GSI

Temporal resolution 28-65 ps Sensitivity: 1Ar atom (5 Mev/u) 1.5 10¹⁰ Electron/Hole pairs Radiation resistant

Spectrometer:

5 stripes of polycrystalline diamond with A=7x20mm² of 20 μ m thickness

Next Steps

