

Micropattern Gaseous Detectors with Charge and Optical Readout for Charged Particle and Photon Detection

- Jona Bortfeldt^{a,b}, Paulina Lämmer^a, Othmar Belker^a, Sebastian Schinzel^a, Lotta Flaig^a, Jörg Schreiber^a, Katia Parodi^a
- a: Ludwig-Maximilians-Universität Munich, Department for Medical Physics (LS Parodi) b: CERN, Geneva
- BLIN4: Fourth Workshop on Beam Line and Instrumentation June 29th 2020

European Research Council Established by the European Commission

LUDWIG-MAXIMILIANS-UNIVERSITÄT

charged particles and X-rays → ionization of gas volume

- lowest material budget: sensitive volumes & electrodes
- highly segmented electrodes possible
- adjustability of operational parameters (gas mixture & pressure, electric fields, ...)
- delayed signal formation possible due to charge drift time \rightarrow immunize DAQ against EMP
- ionization charge detection
 - direct \rightarrow ionization chambers (integrating)
 - amplified charge → Micromegas with charge readout (single particles to integrating)
 - amplified light \rightarrow Micromegas with optical readout (single particles to integrating)

in-house production capabilities

- photolithography: conductive electrodes (AI & Cu on insulating substrates of 2µm to mms)
- photolithography: insulating & spacer structures on polyimide basis
- metal plating
- screen printing: conductive & resistive structures O(0.1mm) width
- ISO 3 & ISO 5 clean rooms: detector development & assembly

Photolithography: MAXIMILIANS-UNIVERSITÄT MÜNCHEN HONCHEN

- standard process for copper clad material
- ultra-thin (ionization chambers, field cage): 40nm alu + 10µm Kapton or 50µm Mylar

 thin (MPGD readout structures): 12µm alu + 32µm Kapton

Transparent Ionization Chamber

application

beam monitoring in pre-clinical proton irradiation

requirements

- minimum impact on beam
- spatial resolution in two dimensions < $50\mu m$ for 1mm FWHM beam
- dynamic range: 10⁵ p/s to 10¹⁰ p/s
- current monitoring accuracy O(1%)

minimized material budget

- 4x 5mm gas gaps
- 2x 2µm Mylar + 2x40nm alu (non-segmented anode)
- 1x 2µm Mylar + 2x40nm alu (non-segmented dose planes)
- 2x 10µm Kapton + 40nm alu (strips, 1mm pitch)
- 2x 10µm Kapton windows

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

commissioning & characterization

- 64 + 1 ch electronics: Pyramid USA
- 10⁵ to 10¹⁰ p/s
- beam: 1.3mm diameter, not fully stable
- 3 independent layers \rightarrow linearity <1%
- chamber mounted on precision linear stage \rightarrow spatial resolution $<< 10\mu m$ (full statistics) $\sim 50\mu m$ (single frame)

June 29, 2020

Ultra-Thin Dual Readout IC

→ Lotta Flaig's talk today: A transmission ionization chamber for online monitoring of ion bunch fluence and trajectory

- IC development based on experience gained with strip IC
- development of custom amplifier electronics \rightarrow EMP resistant

Floating Strip Micromegas* with MAXIMILIANS-Low Material Budget

copper anode strips: individually connected to HV via $22M\Omega$ x-readout strips: signals capacitively decoupled via O(10pF) y- readout strips: signals directly inductively decoupled

 \rightarrow fast discharge interruption

LUDWIG-

UNIVERSITÄT MÜNCHEN

 \rightarrow negligible impact on efficiency

Bortfeldt et al., NIM A 2017, 845, 210 - 214

*: inspired by the COMPASS MM, considerably improved in: Bortfeldt, The Floating Strip Micromegas Detector, Springer, 2014

June 29, 2020

NU

Floating Strip Micromegas* with Low Material Budget

copper anode strips: individually connected to HV via 22MΩ x-readout strips: signals capacitively decoupled via O(10pF) y- readout strips: signals directly inductively decoupled

- \rightarrow fast discharge interruption
- \rightarrow negligible impact on efficiency

prototype with flex-PCB readout structure (1.1%X₀)

- two detectors back-to-back → 80mm distance
- flexible readout structures: overpressure stabilized

Bortfeldt et al., NIM A 2017, 845, 210 - 214

performance

- spatial resolution (0.5mm pitch): < 100µm
- single particles:
- integrating:

≤ 7MHz/cm²

>2GHz

*: inspired by the COMPASS MM, considerably improved in: Bortfeldt, The Floating Strip Micromegas Detector, Springer, 2014

Floating Strip Micromegas with Ultra-Low Material Budget

12µm Al anode & y-strips on 32µm Kapton & glue → x-readout strips outside active area → 0.15 X₀ per detector (70% from mesh)

Tests in 22 & 21MeV Proton Beams LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN @ MLL Tandem late 2019

beam kHz to 5MHz 4x5mm² FWHM (pCT<0.5MHz/cm²) $\Delta I/I \sim 1\%$ @

dual strip IC multi-channel electrometer ro 1MHz

reference FSMs $4 \times APV25 + SRS$ aluminum FSM single layer 2x APV25 + SRS Ne:CF₄ 80:20

Jona Bortfeldt - MPGDs with Charge & Optical Readout

trigger scintillator **NIM** electronics $APV25 \rightarrow jitter correction$

June 29, 2020

10

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

- pulse height ratio $y/x \sim 0.5 \rightarrow$ well usable
- tracking works well: analysis ongoing, limited by scattering in reference detectors
- no sign of aging in beam \rightarrow long term irradiation in lab ongoing

LUDWIG-

MÜNCHEN

Micromegas with Optical Readout MAXIMILIANS-UNIVERSITÄT

ionization by particle/X-ray beam

amplification avalanche in Ne:CF₄ \rightarrow local & proportional production of charge + photons (620 & 300nm)

optically transparent, unsegmened anode 25x25mm² with support pillar structure

detect optical photons with EM CCD

- \rightarrow beam position & intensity
- \rightarrow gas gain adjustable for integrating or single particle detection

Tests with 22MeV Protons @ M MAXIMILIANS-& Sources in Lab UNIVERSITÄT

first test in 22MeV proton beams

- lower detection limit: 6x10⁴ p/frame
- tested up to 2.5x10⁵ p/frame

LUDWIG-

MÜNCHEN

- EM CCD coupling to detector not light tight
- correlation with beam monitor IC

mesh supporting pillar shadow

improved light tightness: lab test

- enables higher CCD amplification
- individual events from 55Fe and 90Sr source (plot) visible
- \rightarrow plan: reduce material budget by using double mesh structure instead of glass anode

micropattern gaseous detectors for charged particle & photon detectors in-house development & production

transmission ionization chamber with aluminized electrodes

- strip ionization chamber
 - material budget: 46µm Kapton/Mylar + 0.4µm aluminum + 40mm gas
 - successfully tested in 22MeV p beams
 - beam fluence, position & shape
- unsegmented dual readout IC \rightarrow Lotta Flaig's talk today

floating strip Micromegas with aluminum readout structure

- single particle & photon detection with high spatial resolution
- successfully tested in several 22MeV proton beams and with sources in lab

Micromegas with optical readout

- exploit optical photon production in gas amplification
- successfully tested beam detection with 22MeV protons & single particle/photon detection in lab

jonathan.bortfeldt@lmu.de

June 29, 2020

micropattern gaseous detectors for charged particle & photon detectors in-house development & production

transmission ionization chamber with aluminized electrodes

- strip ionization chamber
 - material budget: 46µm Kapton/Mylar + 0.4µm aluminum + 40mm gas
 - successfully tested in 22MeV p beams
 - beam fluence, position & shape
- unsegmented dual readout IC \rightarrow Lotta Flaig's talk today

floating strip Micromegas with aluminum readout structure

- single particle & photon detection with high spatial resolution
- successfully tested in several 22MeV proton beams and with sources in lab

Micromegas with optical readout

- exploit optical photon production in gas amplification
- successfully tested beam detection with 22MeV protons & single particle/photon detection in lab

jonathan.bortfeldt@lmu.de

Thank you!

June 29, 2020