Dosimetry for proton irradiation of 3D cell models at ultra-high dose rate

Giuliana Milluzzo

Queen's University Belfast (Uk

ADVANCED STRATEGIES FOR ACCELERATING IONS WITH LASER BLIN4 June 29, 2020

Laser-acceleration of ions for biomedical applications

Activities

WP1: Exploration of different acceleration regimes **WP2**: Investigation of the extreme interaction physics underlying the acceleration processes WP3: Development of enabling technology (taretry, advanced optics, diagnostics) WP4: Investigation of highly pulsed ion radiobiology

Proton-hadron therapy

- Dose deposition in a unique pattern called Bragg Peak.
- Spares the normal surrounding tissues

depth in water [mm]

Radiobiology at ultra-high dose rate

Conventional dose-rate 0.01-0.1 Gy/s (1-10 Gy/min)

FLASH dose-rate >40 Gy/s (>2400 Gy/min)

Laser-driven dose-rate >10⁹ Gy/s (>10¹¹ Gy/min)

Possible effects

- Spatio-temporal overlap of independent tracks
- Local depletion of oxygen
- Lack of interaction between prompt DNA lesions and indirect lesions

Studies

- Investigations of DNA damage and repair dynamics
- Survival studies •
- Sub-lethal damage investigations

A Novel regime of radiobiology

Hanton, F. et al., DNA DSB Repair Dynamics following Irradiation with Laser-Driven Protons at Ultra-High Dose Rates. Scientific Reports, 9(1), 4471.

Int J Radiation Oncol Biol Phys, Vol. 106, No. 2, pp. 440e448, 2020

preserving the anti-

tumor activity

29/06/2020

Experiment@ VULCAN PW RAL

PURPOSE

Irradiation of Glioblastoma stem cells irradiation in 3D and 2D configuration with 30-35 MeV protons

CHALLANGE

Sufficient dose at 30-35 MeV Depth-dose distribution homogeneity (3 mm) for 3d cell irradiation

Beam and setup parameters

- Dose- 0.5-4 Gy
- Variable slit (0.25-1 mm)
- Dose Rates- 10⁹ Gy/s
- Dose delivery: Single pulse
- Radiochromic films (RCF-EBT3) for dosimetry

Experimental setup

Vulcan PW

Power: 1 PW Time pulse: 500 fs Energy: 650 J Intensity: 10²¹ W/cm² Target: 15 um Au

Cell irradiation

Biological Endpoints

- DNA DSB Damage and Repair Assay -> FOCI counting
- Clonogenical assay -> Cell survival fraction as a function of the absorbed dose

DNA DSB damage in 3D neurosphere detected using Octopus Light Sheet Microscopy. Nucleus is shown in blue, green dots represent DNA DSB break in cells.

- Enhanced biological damage induced in 3D cell models neurospheres due to hypoxic regions in their interior
- 3D neurospheres are more realistic because they mimic the tumor architecture and provide a snapshot of the tumour physiological microenvironment

2D GBM cells in slide flask

RCF-EBT3 in front for dose measurement Monolayer (10 um) cells for comparison

Transverse profile and energy spectrum

Dose distribution @ cell plane 0.5-30 Gy whole energy spectrum

Depth-dose profile at cell position

RCF stack at cell position

...a bit of statistics

Reference measurements with conventionally accelerated protons (30-60 MeV) have been performed at LNS-INFN along CATANA beamline- analysis is ongoing

Contributors

M. Borghesi, P. Chaudhary, H. Ahmed, S. Kar, C. Maiorino, A. McIlvenny, A.McMurray, S. McCallum, P. Martin, B. Odlozilik, K. Polin, K.Prise, C. Scullion, Queen's University Belfast, UK

Co-financed by the Participating States and from the European Union's Horizon 2020 research and innovation programme.

A-SAIL

ADVANCED STRATEGIES FOR ACCELERATING IONS WITH LASERS

P. McKenna, University of Strathclyde, UK D.Doria, Extreme Light Infrastructure - Nuclear Physics (ELI-NP) L. Romagnani, LULI, Ecole Polytechnique (France)

