

LhARA

a step on the route to precision particle-beam therapy

The Laser-hybrid Accelerator for Radiobiological Applications

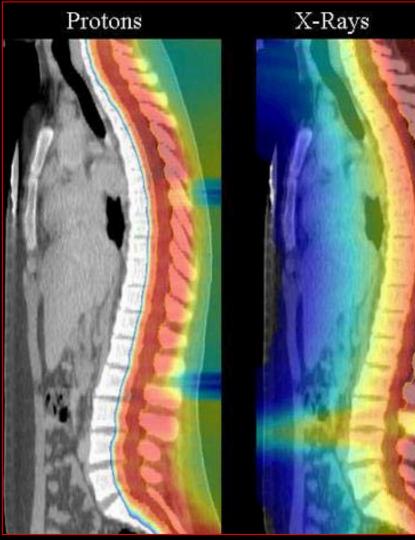
LhARA

arXiv:2006.00493

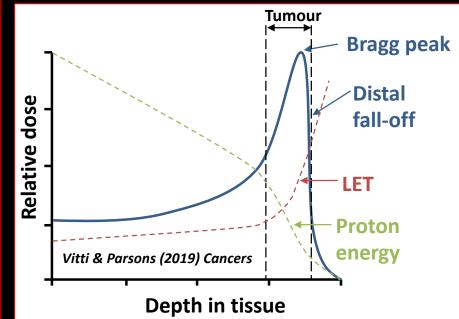
K. Long, 29 June, 2020

Acknowledgements

The LhARA consortium!


LhARA consortium Nov19

Since completion of pre-CDR (Apr20) the following groups have joined the consortium;


- The National Physical Laboratory
- -Surrey
- Birmingham:
- School of Physics and Astronomy
- University Hospitals Birmingham NHS
- Foundation Trust
- Birmingham Cyclotron Facility
- Positron Imaging Centre at the University of Birmingham
- -Institut Curie (Paris)

Radiotherapy; the challenge

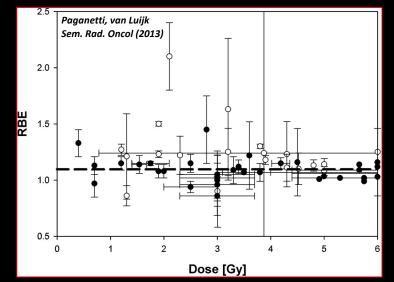
- Cancer: second most common cause of death globally
 - Radiotherapy indicated in half of all cancer patients
- Significant growth in global demand anticipated:
 - 14.1 million new cases in 2012 → 24.6 million by 2030
 - − 8.2 million cancer deaths in 2012 ---> 13.0 million by 2030
- Scale-up in provision essential:
 - Projections above based on reported cases (i.e. high-income countries)
 - Opportunity: save 26.9 million lives in low/middle income countries by 2035
- Provision on this scale requires:
 - Development of new and novel techniques ... integrated in a
 - Cost-effective system to allow a distributed network of RT facilities

Particle-beam therapy

Proton and ion-beam therapy:

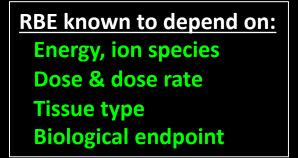
- Bulk of dose deposited in Bragg peak
- Significant normal-tissue sparing (entry)
- Almost no dose beyond the Bragg peak

LhARA ... the vision


The execution of the LhARA programme will:

- Create the capability to deliver particle-beam therapy in completely new regimes
 - by combining a variety of ion species in a single treatment fraction and exploiting ultra-high dose rates and novel spatial-fractionation schemes.
- Make "best in class" treatments available to the many
 - by demonstrating in operation a system that incorporates dose-deposition imaging in a fast feedback-and-control system thereby reducing the requirement for a large gantry.

The radiobiology needs to be understood


Treatment planning:

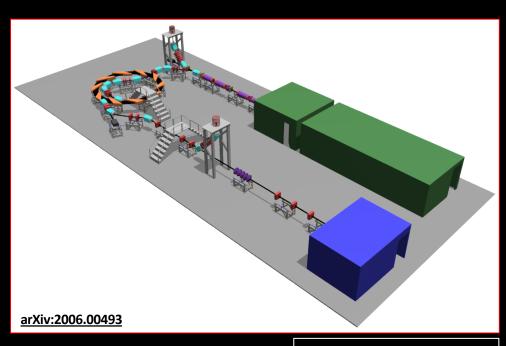
- -Based on 'Relative Biological Effectiveness (RBE)
 - Proton-treatment planning uses RBE = 1.1
 - Effective values are used for C⁶⁺

<u>RBE:</u>

Ratio of dose required to gain same biological response as reference photon beam

Essential: improved, fundamental, understanding of radiobiology

Radiobiology in new regimens

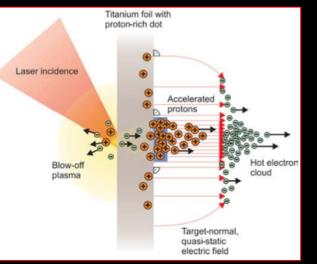

In combination and with chemo/immuno Therapies

Laser-hybrid Accelerator for Radiobiological Applications

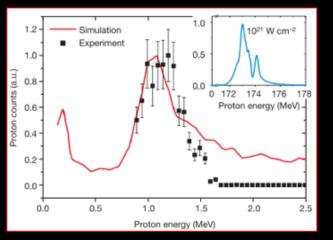
LhARA; a novel, hybrid, approach:

- High-flux, laser-driven proton/ion source:
 - -Overcome instantaneous dose-rate limitation
 - -Delivers protons or ions in very short pulses:
 - Pulse length 10 40 ns
 - -Can provide arbitrary pulse structure
- Novel plasma-lens capture & focusing
- Fast, flexible, fixed-field post acceleration

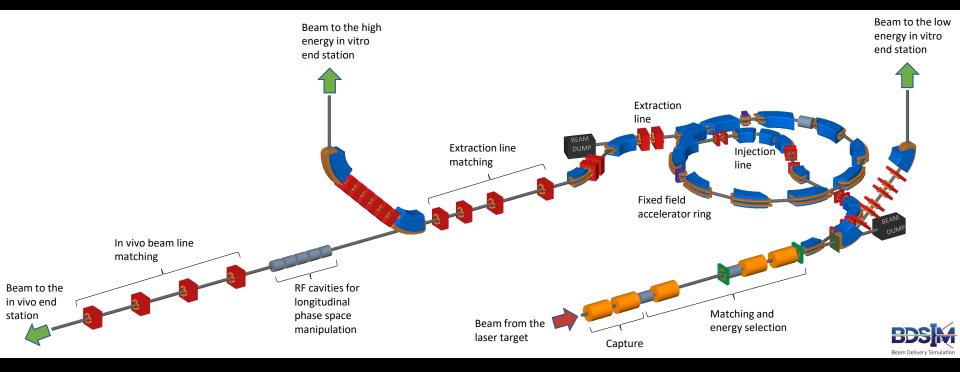
 Protons up to 127 MeV p;
 lons up to ~35 MeV/u


• Staged implementation:

- -Stage 1: In vitro studies with protons at energies up to 15 $\ensuremath{\mathsf{MeV}}$
- -Stage 2: In vivo & in vitro studies with protons up to 127 MeV and ions up to 33 MeV/u


→ compact, uniquely flexible facility

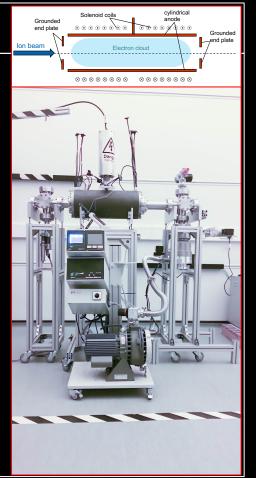
LhARA consortium

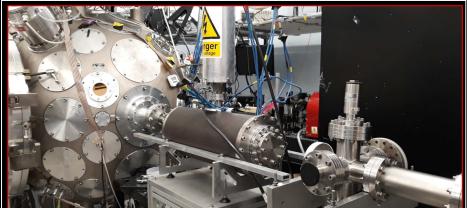

Schwoerer, H. et al., 2006; Nature, 439(7075).

Sheath acceleration

- Laser incident on foil target:
 - Drives electrons from material
 - Creates enormous electric field
- Field accelerates protons/ions
 Dependent on nature of target
- First observation ~2000
- Active development:
 - Laser: power and rep. rate
 - Target material, transport

LhARA

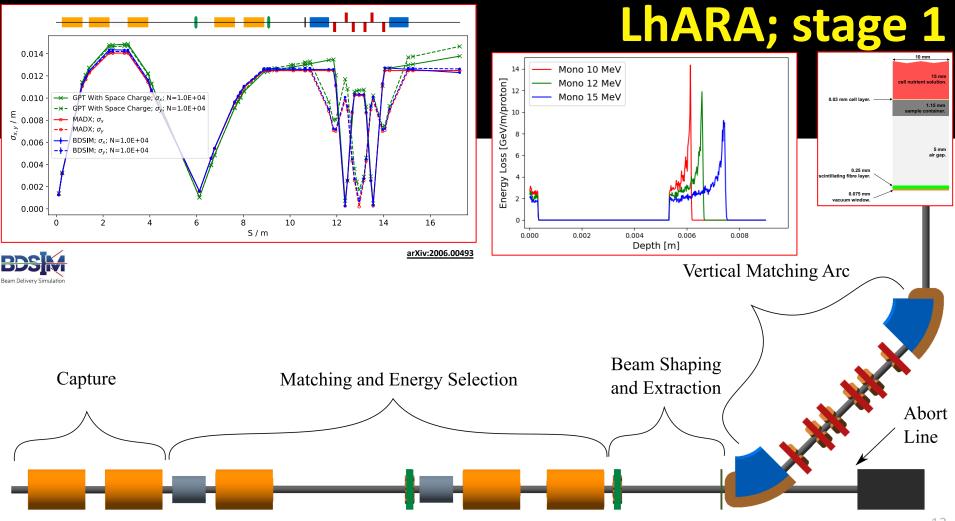



LhARA: ion-source development

Capture

- Electron plasma: - Strong focusing of +ve ions
- 1st prototype:
 - 1 MeV protons
 Surrey Ion Beam
 Centre
 - Aberrations observed
- Upgraded prototype:
 - Under development Imperial

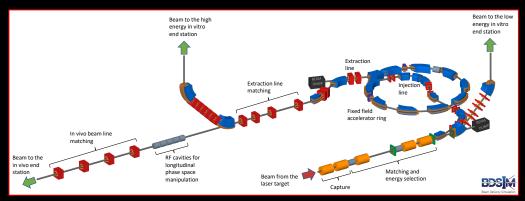
Laser source/capture test



Integration test:

-Gabor lens on cerberus Laser at Imperial

• Plan:


-"Now": prepare to validate lens with α -Next: test using laser-driven source

LhARA – Stage 2

• In-vitro radiobiology using animal models:

Post-acceleration required

- Baseline: fixed field accelerator:
 - x3 increase in momentum
 - 15 MeV protons accelerated to 127 MeV
 - 3.8 MeV/u carbon 6+ ions accelerated to 33 MeV/u

arXiv:2006.00493

Next steps; 5-year R&D plan

- 5-year plan presented in pre-CDR designed to:
 - Address technical risks presented in pre-CDR
 - Especially source and plasma-lens capture
 - Instrumentation and diagnostics
 - Deliver technical designs for the LhARA facility
 - End stations.
 - Automation, sample handling, imaging
 - Simulation, including impact on tissue/tissue response

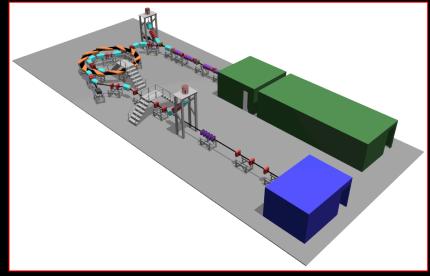
arXiv:2006.00493

→ Capability to start Stage 1 in-vitro programme

Conclusions

- Laser-hybrid approach has potential to:
 - Overcome dose-rate limitations of present PBT sources;
 - Deliver uniquely flexible facility:
 - Range of ion species, energy, dose, dose-rate
 - Disruptive/transformative approach 'for 2050' ...
- Opportunity:
 - Develop and prove novel systems in production system;
 - Deliver research facility dedicated to radiobiology;
 - Contribute to study of biophysics of charged-particle beams
- First and next steps:
 - Initial concept developed and prototype evaluation underway
 - Seeking resources to execute R&D programme laid out in 'pre-CDR'
 - Wonderful opportunity to build novel techniques to spin back in!

Laser-hybrid Accelerator for Radiobiological Applications (LhARA)


LhARA status

Modest resources to date have delivered LhARA "pre-CDR":

• STFC Opportunities 2019 award; and consortium

Milestone: pre-CDR by April 2020:

- Completed.
 - Review by international panel 25&31 Mar20
 - Peer-endorsement subsequent to 2019 PPRP review
- <u>Publication</u> based on the pre-CDR:
 - Submitted to Frontiers in Physics Medical Physics and Imaging
 - Uploaded to the arXiv as <u>arXiv:2006.00493</u>

