

Precision liquid target development for kHz relativistic laser-matter interaction studies

Enam Chowdhury^{1,2}

¹Ctr. Air Force Research Laboratory, Wright Patterson Air Force Base, OH ²The Ohio State University

The Ohio State University

Outline

- Motivation
- AFRL Lab liquid target development
- Experiment: Relativistic electron generation with precision liquid targets
- Other efforts in target developments
 - Liquid crystals
 - Reduced mass

Motivation

SCARLET 500 TW, 0.0167 Hz

BELLA > 1 PW, 1 Hz

LLNL HAPLS laser ELI Beamline, > 1PW, 30 fs, 10 Hz

- Advent of High Rep rate lasers
- Applications:
 - High rep rate sources
 - Ions (Cancer Therapy, HZDR)
 - Neutrons (Karsch, Kitagawa, DARPA Pulse NE-OSU-UT)
 - Electrons, x-rays, positrons (many groups)
- Experiments
 - FEL/XFEL rep-rate high (LCLS 120 Hz, European XFEL, SASE, and others)

Kitagawa Nat. Phys. 2013 Neutron Generation 1 Hz

Figure 1 | Snapshot of a flying pellet at the instant of engagement by using a 2ω harmonic laser probe. The probe is perpendicular to the

*Solem 1986, Neutze...Hadju 2000, Chapman et al 2006 – first experiment, low resolution. *Chapman, Fromme.....Spence Nature 2011; Spence, Weierstall, Chapman Rep Prog Phys 2012 (Review).

Why liquid target?

Hansson and Hertz, J. Phys. D: Appl. Phys. 37 (2004) 3233-3243

Precision Liquid targets at AFRL

- Liquid targets produced in 0.9 20 Torr
- Target type
 - Jet column (30-200 μm),
 - droplets (> 5 μ m),
 - Sheet (~300 nm)
- Positioning accuracy: 1 μm
- Healing time from $10 40 \ \mu s$

Experiments at > 10¹⁸ Wcm⁻² intensities with liquid targets

Liquid target interaction Probing system

Single oscillator splits into pump (780 nm) and shifted probe amplifier (830 nm)

Interferometry and shadowgraphy

- Pre-pulse generated preplasma detection with 10¹⁸ Wcm⁻² interactions in water
- Distinguish regions of plasma from vacuum and neutral regions

Feister et al. Rev. Sci. Instruments, 85, 11D602 (2014)

A novel femtosecond-gated, highresolution, frequency-shifted shearing interferometry technique for probing pre-plasma expansion in ultra-intense laser experiments

Submicron laminar sheet healing in vacuum

Experiment: Relativistic electron generation with precision liquid targets

Conventional Wisdom: LPI

What we expected from ional Ultra-intense LPI sms: Ionized electrons ed in the laser field ropagates in forward with significant energy

observed: Backward going MeV electron beam

Added Panoramic Image Plate

X-ray Dose Through Pb Filters

Image Plate's View of OAP & mount

Beamlike dose through 4mm of Lead Implies spectral components > 200keV

Central Feature 3-5° apparent divergence Integrated over ~ 10⁵ shots We then decided to observe single hit x-ray spectra Backward-propagating MeV electrons from 10¹⁸ Wcm⁻² laser interactions with water Morrison et al. PoP (2015)

Current Measurement Through 100 µm BK7 Glass

Backscattered electrons on Imaged Lanex Screen

Relative

Deformable mirror

Optimization of focal pot

"Best focus" optimization

- 500 1000 1500 2000 Kinetic Energy (keV)
- 10 shot integration
- working on absolute calibration

• Hole is 3-mm, 10 degree cone.

The "Holey OAP"

- Energy calibrated using 2D particletracking code in conjunction with measured magnetic fields
- Electron angle of incidence at each energy can also be determined.

Particle-in-Cell (PIC) Simulations

Other HEDP target work at OSU

Liquid crystal films are variable thickness, on-demand, inexpensive targets

- Thicknesses between 10 nm and 10 μm can be made in real time
- Thickness variation possible via temperature, volume control
- Volume per target is small: << 1 cent each
- Films formed outside of target chamber survive installation and alignment and maintain initial thickness below 10⁻⁶ Torr
- In-situ rep-rated film formation possible at 0.33 Hz with < 2 μm RMS positioning repeatability, faster rates under development

PI: Douglass Schumacher

SHORT PULSE PRODUCED PLASMAS ARE BRIGHT SOURCES OF RADIATION

High fluxes and small sources required for high-resolution point projection radiography and Thomson scattering

Summary

- AFRL Lab liquid target development for kHz reprate experiments
 - Jet
 - Droplet
 - Sub-micron sheet
- Experiment: Relativistic electron generation with precision liquid targets
 - Backward MeV electrons/x-rays with mJ-1kHz laser
 - Presence of pre-plasma crucial for backward propagating electron acceleration
- Currently working on kHz neutron generation

Acknowledgements

John Morrison (ISSI;NRC Post Doc) **Scott Feister (OSU; ISSI)** Drake Austin (OSU; ISSI) **Kyle Frische (ISSI) *Vladimir Ovchinnikov (ISSI) Chris Orban (ISSI; OSU) Gregory Ngirmang (OSU; ISSI)** John Nees (ISSI, UM) **Group Leader: Mel Roquemore (AFRL/RQ)**

- Air Force Office of Scientific Research Quantum and Non-equilibrium Processes Division, Program Manager: Dr. Enrique Parra
- DoD supercomputer SPIRIT
- Ohio State Supercomputer center storage

Contrast of Red Dragon vs. Pockel's Cell Gating

- Diodes and calibrated filters were used to measure ns pre-pulses up to 60 ns prior to the main pulse arrival
- The measurement shows that the pre-pulses constitute of satellite short pulses from oscillator, separated by oscillator period, which rides over the broad 12 ns FWHM
- Calibrating against TOCC measurement of ASE, we have been able to determine what the ns level ASE contrast is. These parameters can then be put into LPI simulations