Development of submicron-size hydrogen cluster targets for impurity-free laser-driven proton sources

<u>Y. Fukuda^{1,3}</u>, S. Jinno², M. Kanasaki¹, H. Tanaka³, H. Sakaki¹, K. Kondo¹, R. Matsui⁴, Y. Kishimoto⁴

¹ Kansai Photon Science Institute (KPSI), Japan Atomic Energy Agency (JAEA), Japan

² Nuclear Professional School, the University of Tokyo, Japan

³ School of Engineering Sciences, Kyushu University, Japan

⁴ Graduate School of Energy Science, Kyoto University, Japan

Targetry for Laser-driven Particle Accelerator Sources and Attosecond Science Cloître des Cordeliers, Paris 20-22 April 2015

1. Introduction

Coulomb explosion of clusters@10²² W/cm² regime

- 2. Development of submicron-size hydrogen cluster targets
- 3. 2D-PIC simulations for Coulomb explosion of submicron-size clusters@10²² W/cm² regime
- 4. Summary

Re-thinking: Coulomb explosion of clusters

JAEA

From a view point of applications of laser-driven proton beam to laboratory nuclear physics, cancer therapy, etc.,,

Ion acceleration mechanism should be simple enough to ensure "stability"...

Re-thinking: Coulomb explosion of clusters

Ex)

Magnetic-field assisted ion acceleration with cluster targets

Y. Fukuda *et al.*, Phys. Rev. Lett. **103**, 165002 (2009).
Y. Fukuda *et al.*, Radiat. Meas. **50**, 92 (2013).

Pros

- Tenfold enhancement of accelerated ion energy compare to TNSA experiments
- High rep. rate
- Debris free
- Physical process-Scientific interests

Cons

- Unstable-<u>highly nonlinear</u> phenomena
- Small number of accelerated ions
- <u>Not suitable for applications</u>

One of possible solutions for <u>100 MeV proton beams</u> suitable for applications

Coulomb explosion of H₂ clusters @10²² W/cm²

Re-thinking: Coulomb explosion of clusters

K. Nishihara et al., NIM A 464, 98 (2001).

Maximum ion energy obtainable from "pure" Coulomb explosion:

$$E_{\rm max} = 300Z^2 \times \left(\frac{n_0}{5 \times 10^{22} \,{\rm cm}^{-3}}\right) \left(\frac{R_0}{1\mu{\rm m}}\right)^2 = 276Z^2 \times R_0^2(\mu{\rm m}) \,{\rm MeV}$$

Ex) H₂ cluster 10 keV (dia. 10 nm) <= good for D-D fusion (T. Ditmire et al., Nature **398**, 489 (1999).) 0.69 MeV (dia. 100 nm) 44 MeV (dia. 800 nm) <= good to trigger nuclear reactions 276 MeV (dia. 2000 nm) <= good for cancer therapy</p>

Laser intensity required to <u>remove all electrons</u> from clusters:

$$a_0 = 34\sqrt{2} \times \sqrt{\frac{4.6 \times 10^{22} \text{ cm}^{-3}}{5 \times 10^{22} \text{ cm}^{-3}}} \left(\frac{R_0}{1\mu\text{m}}\right) = 46.11 \times R_0(\mu\text{m})$$

Ex) H₂ cluster

 $1x10^{17}$ W/cm² (dia. 10 nm) <= good for D-D fusion (T. Ditmire et al., Nature **398**, 489 (1999).) $1x10^{19}$ W/cm² (dia. 100 nm) $7x10^{20}$ W/cm² (dia. 800 nm) <= good to trigger nuclear reaction $4x10^{21}$ W/cm² (dia. 2000 nm) <= good for cancer therapy

The "J-KAREN" : Intense Laser Facility at JAEA-KPSI

The 1st PW-class OPCPA/Ti:sapphire hybrid laser system

Under a major upgrading

1 PW mode (40 J, 30 fs, 0.1 Hz) coming soon...

10²¹-10²² W/cm² could be achieved...

H. Kiriyama et al., Opt. Lett. 37, 3363 (2012).

Development of submicron-size hydrogen cluster

Characterization of Cluster Size using Mie scattering

S. Jinno, Y. Fukuda et al., Appl. Phys. Lett. 102, 164103 (2013).

Characterization of Cluster Size using Mie scattering

Calibration Measurements using Standard Particles

Result: Size distributions for H₂ clusters

JAEA

Summary

Development of submicron-size H₂ clusters Created H₂ clusters with <u>400-2000 nm</u> in dia. at 25 K Rep. rate: up to 1 kHz! Debris free

2D PIC simulation for H₂ clusters (800 nm) @ 10²² W/cm² <u>100 MeV</u> class "*impurity free*" protons from PW lasers <u>Anisotropic</u> Coulomb explosion

if there is no prepulse...

need more experiments and simulations.