LASER WAKEFIELD ACCELERATION IN TAILORED UNDERDENSE PLASMAS

E. Guillaume', A. Döpp¹, C. Thaury¹, K. Ta Phuoc¹, A. Lifschitz¹ and V. Malka¹

^{1.} Laboratoire d'Optique Appliquée, École Polytechnique - CNRS UMR7639 - ENSTA ParisTech, Palaiseau, FRANCE

I. Laser-plasma electron acceleration

- 2. Electron energy boost by tailoring the plasma density
- 3. The laser-plasma lens

Electron acceleration

Laser :

Power : multiTW Pulse duration ~ 30 fs Focal spot size ~ 10 µm

Plasma :Gas density $\sim 10^{18} - 10^{19} \text{ cm}^{-3}$ Wakefield $\lambda_p \sim 30 \ \mu\text{m}$ Longitudinal field : $\sim 100 \ \text{GV.m}^{-1}$

Electrons : Energy 10 MeV - 3 GeV Charge I - 100 pC Duration I - 50 fs

Longitudinal self-injection

Self-injection (wavebreaking process) : most common and easier method of injection

Transverse self-injection : off-axis, strong oscillations, high charge, unstable

Longitudinal self-injection : on-axis, weak oscillations, low charge, stable

OO

2. Electron energy boost by tailoring the plasma density

Pushing the limits of the accelerator

After some acceleration distance, electrons are faster than the plasma wave and enter the decelerating phase of the wakefield

Dephasing limits the maximum attainable energy in a laser-plasma accelerator

Objective

Mitigate the dephasing effects by resetting the phase of electrons before reaching the dephasing length

OC

loa Pushing the limits of the accelerator n_e Before the density step After the density step $n_{e,2}$ $L_{b,2}$ $L_{b,1}$ $n_{e,1}$

Phase resetting by crossing a sharp upward density transition : the electrons phase slippage is compensated by reducing abruptly the cavity size L_b

$$L_b \sim \lambda_p \propto n_e^{-1/2}$$

Gas jet machining : formation of a two densities plasma

Sharp upward density transition created by a shock front with a razor blade inserted in a supersonic gas jet (setup from Schmid *et al.* (2010), PRSTAB **I3** 091301)

Plasma density profile

Density profiles measured with a Nomarski interferometer and Abel inversion

2mm gas jet (Mach 4)

TARG2 - Paris

loa

emilien.guillaume@polytechnique.edu - 20/04/2014

Experimental setup

Interaction beam : I.2 J, 30 fs, 15 microns FWHM $I = 1 \times 10^{19} \text{ W.cm}^{-2}$ Focused with a f/10 OAP at the entrance of a 1.5 mm

supersonic gas jet $n_e = 8 \times 10^{18} \text{ cm}^{-3}$

500 µm thick Silicon blade to create the shock

Transverse self-injection

Electron spectra measurements

Blade out : electron spectrum rather flat, cut-off energy around 230 MeV

loa

Blade in : part of electrons slow down and defocus and apparition of a quasi **mono-energetic peak at 300 MeV**

Changing the position of the shock

By changing the position of the shock, it is possible to change the energy gain of the peak

Optimum position of the shock : I 50 MeV energy increase (**gain ~ 50%**)

loa

Phase-space in PIC simulations

Without shock : lengthly self-injection creates a long electron bunch

Head of the bunch **decelerates** when reaching the center of the cavity

With shock : bubble shrinks after the density jump, its center is shifted

Head of the bunch shifts back at the tail o the bubble and is **accelerated**

3. The laser-plasma lens

Electron beam divergence and emittance

Emittance of the electron beam :

$$\varepsilon_{rms} = \sqrt{\langle x^2 \rangle \langle x'^2 \rangle - \langle xx' \rangle^2}$$

Bunch Beam
size divergence

Typical size of electron bunches : < I μm

Typical divergence of electron beams : ~ 4 mrad

Emittance dominated by the rather large divergence

Not convenient for applications (FEL, synchrotron radiation)

Objective

Reduce the divergence of the beam down to 1 mrad

Principle of the laser-plasma lens

SPIE 2015 - Prague

Experimental setup

Acceleration stage

Interaction beam : 0.9 J, 28 fs, 12 microns FWHM $I = 1.8 \times 10^{19} \text{ W.cm}^{-2}$ Focused with a 1 m OAP at the entrance of a 3 mm gas jet $n_1 = 9.2 \times 10^{18} \text{ cm}^{-3}$ Longitudinal self-injection

Focusing stage

I mm nozzle with variable n_2 Variable L_d

Longitudinal injection

19

loa

SPIE 2015 - Prague

Mean energy over 10 shots :

$E = 241 \pm 12 \text{ MeV}$

Mean divergence over 10 shots :

 $\sigma_{\theta} = 4.1 \pm 0.6 \text{ mrad}$

Few pC charge, stable shot-to-shot

Experimental focusing of the beam

loa

emilien.guillaume@polytechnique.edu - 14/04/2014

20

Experimental focusing of the beam

Drift length and density influence

Evolution of divergence governed by two effects :

- decrease of the minimum achievable divergence $\sigma_{\theta,min} = \varepsilon_x / \gamma \sigma_{\theta} L_d$
- decrease of the laser intensity

Gradient of the focusing fields of the lens evolves as z⁻⁴ : excessive focusing if L_d too short insufficient focusing if L_d too long

Low density : weak focusing fields, divergence hardly reduced

High density : stronger focusing fields

00

Conclusions

Electrons rephasing : energy boost of a quasi mono-energetic peak by almost **50 %** BUT only the head of the bunch is rephased

Solutions : **upward parabolic** density gradient to create a tapered phase-locked laser-plasma accelerator

The laser-plasma lens : divergence reduced by a factor of **2**, but reduction limited by the fast decrease of laser intensity in the lens

Solutions : shorter gas jet for the acceleration stage, **sharper gradients** for the lens stage or a more energetic laser pulse

Need of more advanced machining on gas jet targets for further improvement of electron beam quality