Target development for LWFA experiments at HZDR: Supersonic gas jets and plasma waveguides

Alexander Köhler^{1,2}, Maximilian Messmer^{1,2}, Jurjen Couperus^{1,2}, Omid Zarini^{1,2}, Axel Jochmann¹, Tom Wolterink³, Bert Bastiaens³, Klaus Boller³, Arie Irman¹, Ulrich Schramm^{1,2}

20th April 2015

Member of the Helmholtz Association

Outline

1 Motivation

- 2 Gas jet targets
- 3 Capillary target
- 4 Guiding experiments

Where is the HZDR located?

Where is the HZDR located?

Member of the Helmholtz Association A. Koehler | Institute of Radiation Physics | http://www.hzdr.de

< • •

Electron and X-ray facility at HZDR

Unique facility with:

- Short-pulse high energy laser system DRACO
- Conventional electron accelerator ELBE
- Both synchronised with 100 fs precision

Electron and X-ray facility at HZDR

Unique facility with:

 Short-pulse high energy laser system DRACO

- Conventional electron accelerator ELBE
- Both synchronised with 100 fs precision

Targetry

Gas jet targets

- High density
- Short interaction length
- Plasma created by laser ionisation
- Relativistic self-guiding limits interaction length

Capillary targets

- Low density
- Long interaction length
- Plasma created by electrical discharge
- Guiding via preformed refracting index profile
- More complex setup for discharge DRESDEN

Supersonic gas jet targets

Laval nozzle

Supersonic outflow with high Mach number

•••

Axissymmetrical gas jets and Abel inversion Inverse Abel transform

- Main assumption: cylindrical symmetry of gas jet
- Averages non-symmetrical details

Slit nozzles and Tomography

Tomography allows analysis of:

- non-axialsymmetrical features
- slit nozzles

Slit nozzle tests

Resolution test:

- Knife edge at nozzle exit
- Shockwave created

Summary of gas jet targets

Abel inversion

- Requires only one interferogram
- Left-right-asymmetries averaged out

Tomography

- Multiple interferograms at different angles
- Possible to detect asymmetries

Conclusion

Tomography provides better characterisation of density profile

Capillary target

Motivation

Laser-plasma interaction length in centimeter scale

Principle

- Discharge creates plasma in gas filled capillary
- Discharge current heats plasma in the middle
- Plasma cooled at wall
- Equilibrium creates parabolic refracting index profile

Sapphire capillary

- Submillimeter cross section
- High mechanical strength
- High thermal conductivity
- Structure fabricated by Laser ablation

Member of the Helmholtz Association

Capillary target

Motivation

Laser-plasma interaction length in centimeter scale

Principle

- Discharge creates plasma in gas filled capillary
- Discharge current heats plasma in the middle
- Plasma cooled at wall
- Equilibrium creates parabolic refracting index profile

Sapphire capillary

- Submillimeter cross section
- High mechanical strength
- High thermal conductivity
- Structure fabricated by Laser ablation

Target life time

Life time reducing factors:

- Heat deposition on channel walls during discharge
- High thermal stress on edges
- Ablation of electrodes and channel
- Deposition of sputtered material inside channel

Member of the Helmholtz Association

Simulated gas density inside capillary

- Simulated gas density in OpenFOAM
- Constant profile between inlets
- Different density because of different cross section of both capillaries

Time evolution of electron density n_e

- Discharge duration 250 ns, 20 kV
- Image captured by ICCD at 5 ns
- Channel formation visible
- Channel stable around discharge current peak
- Refraction index $\propto n_e^{-1}$

Member of the Helmholtz Association A. Koehler | Institute of Radiation Physics | http://www.hzdr.de

•••

Test guiding measurements with DRACO

DRACO (Dresden laser acceleration source):

- 800 nm
- Pulse width: 40 fs
- Energy: 20 mJ
- Waist: 30 μm
- Rayleigh-length: 4,8 mm

Focus profile:

Time dependence of guided laser pulse

Calculated vs. measured matched spot size

(A. Gonsalves: "Transverse Interferometry of a Hydrogen-Filled Capillary Discharge Waveguide" PRL 98 (2007)):

$$w_T = 6.6 \cdot 10^4 \mu \mathrm{m} \cdot \left(\frac{a_{Cap}}{2\mu \mathrm{m}}\right)^{0.651} \cdot \left(\frac{n_{\mathrm{H}_2,0}}{\mathrm{m}^{-3}}\right)^{-0.1875}$$

Conclusion Good match for $a=200 \,\mu m$

Outlook

Next experiments with better focus profile and higher energy

Thank you for your attention!

• • •

Abel inversion

Fundamentals of waveguides

Stoop, C.H.: *Tailoring plasma waveguides for high intensity laser guiding*, 2006

- Step index fibre: reflexion on core → cladding
- Graded index fibre: parabolic gradient of refraction index
- Matched Spot Size:

$$w_m = \sqrt[4]{\frac{r_{\rm Chan}^2}{\pi\Delta n_e r_e}}$$

 \rightarrow Light rays remains focused $(v_{\varphi}(n))$, constant beam radius

Axissymmetrical gas jets and Abel inversion

4 D b

Measurement of longitudinal electron density n_e

- 20 kV discharge circuit with thyratron
- Mach-Zehnder-Interferometer
- HeNe-Laser 633 nm (cw)
- Camera shutter open for 5 ns

concent

Comparision of guiding parameter

	Sillica	Sapphire	Sapphire
Gas	He	He	H_2
$w_M[\mu \mathrm{m}]$	25 ± 5	25 ± 5	35
Pressure[mbar]	110 ± 10	175	135 ± 15
Time[ns]	90105	125 ± 10	205 ± 25

Member of the Helmholtz Association A. Koehler | Institute of Radiation Physics | http://www.hzdr.de

< • •

Gonsalves

$$w_{M} = 6, 6 \cdot 10^{4} \mu \mathrm{m} \cdot \left(\frac{a_{\mathrm{Kap}}}{2\,\mu\mathrm{m}}\right)^{0,651} \cdot \left(\frac{n_{\mathrm{H}_{2},0}}{\mathrm{m}^{-3}}\right)^{-0,1875}$$
(1)

Elektrische Entladungen

- Entladungsweg hängt von Füllungsgrad der Kapillare ab
- Stabile Entladungen bei vollständig gefüllter Kapillare
- Kammerdruck wichtig
- EMP
- Entladungsdauer beeinträchtigt Lebensdauer der Kapillare

