High Repetition Target Systems and Novel Techniques for Proton Acceleration

T. Sokollik^{1,2}, N. Haq^{1,2}, Z. Liu¹, F. Liu^{1,2}, X.L. Ge^{1,2}, L.L. Yu^{1,2}, Z.M. Sheng^{1,2,3}, J. Zhang^{1,2}

¹Key Laboratory for Laser Plasmas, Shanghai JiaoTong University, Shanghai, China ²IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240, China ³SUPA Department of Physics, University of Strathclyde, Glasgow, United Kingdom

M. Schnürer, J. Braenzel, L. Ehrentraut Max-Born Intitute, Berlin, Germany

Laboratory for Laser Plasmas

Established in 2010 as a key laboratory of the Ministry of Education (Director: Prof. Liejia Qian) Currently with 28 research staffs and about 50 graduate students

Research Groups:

- High energy density physics (group leader: J. Zhang)
- Ultrafast electron beam and applications (group leader: X. Wang)
- Solid sta Looking for talented
- Nonline Postdocs and PhD. Students F. Chen)
- Laser Er Sokollik@sjtu.edu.cn :r: J.Q. Xu)
- Theory and simulation group (group leader: z.i/l. Sheng)

Laser plasma based particle acceleration and radiation, laboratory astrophysics

T. Sokollik	exp. group leader
N. Hafz	e-acceleration
X.H. Yuan, F. Liu	ion-acceleration

Laboratory (200TW)

200TW laser System

Experimental Areas

Solid Target Chamber (f/4 OAP)

Our Team

5J, 25fs, contrast 10¹⁰-10⁹

Gas Target Chamber (f/20 OAP)

Can laser driven Ion sources be used for real world applications?

Technical Requirements of the source:

- Stability
- Energy
- Flux
- Availability of source (ON-hours)
- (Tailored energy spectra)

For real world applications of laser driven proton beam High repetition target system are required.

- High repetition rate (rep. rate of laser system)
- Large number of shots
- Debris management or debris free

With laser repetition rates increasing in the future (e.g. ICAN) a sufficient target system has to be found.

Advantages:

- Statistics, correlation between laser fluctuations and proton spectra
- Novel Techniques: e.g. Online optimization using evolutionary algorithms

What target systems can we use for high repetition operation?

Target Systems

- Ultra thin foils •
- **RPA**
- NCD Low density • (Foam, expanded Foils, gas)
- **Small Targets** MLT ullet(spherical, planar)

High repetition Target Systems

enerav (MeV)

S. Ter-Avetisyan e.al., PRL 96 145006(2006)

Proton Imaging of Mass limited Targets

electric field distribution

T. Sokollik et al. PRL 103, 135003 (2009)

MBI

Limitations of Water Droplet Target Systems

- Size limitation:
- Low proton energies:

minimum 'thickness' ~ focus spot size

no increase due to MLT effect observed possible reason:

- Ambient gas due to evaporation of water
- Influence of neighbor droplets

Need isolated spheres!

Tape Drive

17

Tape material: 15 µm VHS (Mylar) Tape Drives can be test bench to test high repetition techniques and diagnostics.

Tape

Tape Drive stability

Tape Drive

Surface fluctuation well within Rayleigh length

Energy

Summary and Outlook

Summary

Review off different target systems

Developed stable Tape Drive surface fluctuation (2, 28µm) within Rayleigh length Proof-of-principle Experiment of online optimization using evolutionary algorithm

- Source is stable enough for this method
- Optimization of focus/defocus successful
- Controlled tailoring of spectra not observed (data analysis ongoing, improvement of algorithm ongoing)
- Debris management required

Outlook

What parameters we can change in order to optimize the signal?

e.g. Optimization using temporal pulse shaping (optimization of pre-plasma)

Tape Drive can most likely only be a temporary solution due to the limitation on the proton energy and due to debris. But can be a good test bench to test high repetition techniques and diagnostics.

Thank You