Laser proton acceleration of mass-limited-targets of different materials

K. Zeil, H.-P. Schlenvoigt, F. Brack, J. Metzkes, T. Kluge,

- M. Bussmann, T. E. Cowan, S. D. Kraft, R. Sauerbrey,
- U. Schramm
- G. Becker, M. Hornung, R. Lötzsch, M. Kaluza, T.

Kämpfer, J. Reislöhner, I. Uschmann

HZDR

Helmholtz-Institut Jena

l Jena

HELMHOLTZ | ZENTRUM DRESDEN | ROSSENDORF

Motivation – Laser driven ion therapy

in vitro irradiations can be performed with lasers [Kraft *et al.* (2010), Yogo *et al.* (2011), Zeil *et al.* (2012)] next step:

*T. Kluge et al., Phys. Rev. Lett. 107 (2011), 205003

HZDR

Page 2

Karl Zeil | Laser Particle Acceleration | www.hzdr.de

PW laser status at HZDR – Draco PW upgrade

Draco dual-beam schedule:

150TW (4J in 30fs on target) with

- improved contrast in new target areas operational
- PW (30J / 30fs) amplifier installation running, on target summer 2015

PW laser status at HZDR – Draco PW upgrade

Page 4 Targetry Workshop 2015, Paris

PW laser status at HZDR – Draco PW upgrade

Motivation – Laser driven ion therapy

in vitro irradiations can be performed with lasers [Kraft *et al.* (2010), Yogo *et al.* (2011), Zeil *et al.* (2012)] next step:

*T. Kluge et al., Phys. Rev. Lett. 107 (2011), 205003

HZDR

TNSA from Reduced Mass Targets

Psikal Phys. Plasm. 15 (2008), Kluge Phys. Plasm. 17 (2010)

TNSA at large foil

 electrons laterally spread along the target surface

RMT

- electron reflection at target edges
- T_e and n_e increased
- time averaged hotter and denser sheath

\rightarrow increased proton energies

AuCu disks and ultra-short pulses

K. Zeil, et al., PPCF 56, 084004 (2014)

absolute gain in proton energy and yield for given laser parameters !!
time averaged hotter, denser and more homogenous sheath

HZDF

AuCu disks and ultra-short pulses

Laser: 3 J, 30 fs, 10^{21} W/cm² Diameters: 20 – 100 µm Thicknesses: 100 nm – 1 µm

K. Zeil, et al., PPCF 56, 084004 (2014)

Obvious target material dependence

Complex interplay between target parameters relevant for TNSA

Ti K α Images at backward direction (near OAP)

Ti Kα Images at backward direction (near OAP)

Target edge & stalk effects at DRACO

Page 12 Targetry Workshop 2015, Paris

Accessing target dynamics at critical density?

HZDR

✓ $t_p \approx 130 \text{ fs}$ ✓ $E_L = 0.1\% \text{ of pump}$ ✓ $I < 3.10^{12} \text{W/cm}^2$

2 μm Ti foil with \approx 1 μm of photo resist, $E_{I}\approx~84$ mJ

-3.5 ps

 \approx pump pulse arrival

+23 ps

Accessing target dynamics at critical density?

HZDR

2 μm Ti foil with \approx 1 μm of photo resist, $E_{I}\approx~84$ mJ

-3.5 ps

 \approx pump pulse arrival

+23 ps

Optical probing – influence of the geometry

Si RMT target design

HZDR

target imaging

1) Si membrane @ +1.9 ps 2) Si RMT 50 µm @ +1.9 ps 3) Si RMT 20 µm @ +1.9 ps 4) Si RMT 20 µm @ +1.9 ps

Profit for application

Similar performance for difference in size, thickness, material
 Profit from robust performance enhancement (energy and proton number)
 next: material test at DRACO, optical probing (at high intensity)

Thank you for your attention

multiple filamentation of freely propagating 100 TW beam in air

