Sub-micrometer spheres for laser driven ion acceleration

<u>D. Margarone</u>^a, I.J. Kim^c, J. Psikal^{a,b}, J. Prokupek^{a,b}, O. Klimo^{a,b}, T.M. Jeong^c, J. Kaufman^{a,b}, L. Stolcova^b, J. Proska^b, J. Limpouch^{a,b}, T. Mocek^a, G. Korn^a

^aInstitute of Physics of the ASCR, ELI-Beamlines Project, Prague, Czech Republic; ^bCzech Technical University in Prague, Prague, Czech Republic; ^cAPRI/CoReLS, IBS, GIST-campus, Gwangju, Republic of Korea

The Enhanced-Target Normal Sheath Acceleration (ETNSA [1, 2]) mechanism has been demonstrated in three different experimental campaigns performed at APRI-CoReLS ultraintense femtosecond laser facility. Sub-micrometer polystyrene spheres have been placed at the target front-side in order to enhance the laser absorption and, as a consequence, the number and temperature of the accelerated hot electrons. Such increased laser conversion mechanism at the foil front-side resulted in an increase of maximum energy and total number of the accelerated protons emerging from the target rear-side. Presented results have been obtained by using laser intensities ranging from 5×10^{19} W/cm² up to 5×10^{20} W/cm² and plastic targets with an effective thickness of about 1 μ m. Experimental results and comparison with particle-in-cell numerical simulations are presented and discussed.

[1] O. Klimo et al., New J. Phys. 13(2011) 053028[2] D. Margarone et al., Phys. Rev. Lett. 109 (2012) 234801