Thin cryogenic hydrogen targets for laser-driven ion acceleration Targetry Workshop Munich, Germany | October 10, 2013



TECHNISCHE UNIVERSITÄT DARMSTADT

### Stefan Bedacht

Technische Universität Darmstadt Institut für Kernphysik AG Hoffmann

















(1) Medical Treatment









#### (3) LIGHT project





### Laser Breakout Afterburner (BOA)





Target Normal Sheath Acceleration (TNSA)

Intermediate phase

Laser Breakout Afterburner (BOA)

### **BOA – Proton Energy**





### Laser Parameters

- 120 Joule in 500 fs
- ▶ intensity of 10<sup>21</sup> W cm<sup>-2</sup>
- contrast greater than 10<sup>9</sup>
- linear polarization

Simulation by Lin Yin, Los Alamos National Laboratory

October 2013 | TUD (IKP) | S. Bedacht | 4

### **Cryogenic Target Properties**



### Advantages

- pure
- free standing
- adjustable thickness (µm to cm)
- large diameter (0.1 mm<sup>2</sup> to 1 cm<sup>2</sup>)
- solid state density

### Disadvantages

- non-transportable targets
- complex setup & alignment
- Iow repetition rate



Cryogenic Target

### **Cryogenic Target Properties**



### Advantages

- pure
- free standing
- adjustable thickness (µm to cm)
- large diameter (0.1 mm<sup>2</sup> to 1 cm<sup>2</sup>)
- solid state density

### Disadvantages

- non-transportable targets
- complex setup & alignment
- Iow repetition rate



Cryogenic Target

### Setup



### Requirements

- vacuum chamber
- cryogenic cold head
- pure gases
- pressure control
- temperature control
- target diagnostics



Cryogenic test rig at TU Darmstadt.

### **Growing Chamber**







- copper base plate features good heat conduction
- high tightness due to indium seal
- windows for real time optical diagnostics
- motorized polycarbonate growing chamber

### **Target Geometry**





Different growing chambers. [J. Menzel]

- target geometry is determined by the geometry of the target mount and the growing chamber
  - thickness: µm to cm
  - diameter: mm to cm
- growing process takes about 1–30 min
- thickness can be reduced by controlled heating

### **Growing Procedure**





Phase diagram of hydrogen. [Wolfram/Alpha]

- ensure vacuum better than 10<sup>-5</sup> mbar
- 2. cool copper base plate down to less than 10 K
- 3. attach growing chamber to base plate
- 4. adjust temperature and gas pressure
- 5. fill growing chamber with target gas
- 6. wait for target to solidify

### **Target Thickness Measurement**





### Capabilities

- chromatic confocal sensor
- lateral resolution 3 µm
- vertical resolution 10 nm
- measuring range 2–300 μm

Chromatic confocal distance measurement. [*Polytec*]

October 2013 | TUD (IKP) | S. Bedacht | 10

## Experimental Campaign at PHELIX Overview



### Goal

First experimental campaign to use thin foil-like cryogenic hydrogen targets for laser-driven ion acceleration.

- ▶ PHELIX laser, GSI Darmstadt
- 200 J, 500 fs, 1053 nm, 5 μm focal spot, 10<sup>20</sup> W cm<sup>-2</sup>, 10<sup>9</sup> contrast, bad off-axis parabola (20 % on target)
- 10 days, 32 shots
- chromatic confocal sensor, RCF spectrometer, Thomson parabola
- solid hydrogen on plastic substrate
- pure solid deuterium



Experimental setup on PHELIX.

## Experimental Campaign at PHELIX Overview



### Goal

First experimental campaign to use thin foil-like cryogenic hydrogen targets for laser-driven ion acceleration.

- ► PHELIX laser, GSI Darmstadt
- 200 J, 500 fs, 1053 nm, 5 μm focal spot, 10<sup>20</sup> W cm<sup>-2</sup>, 10<sup>9</sup> contrast, bad off-axis parabola (20% on target)
- 10 days, 32 shots
- chromatic confocal sensor, RCF spectrometer, Thomson parabola
- solid hydrogen on plastic substrate
- pure solid deuterium



Experimental setup on PHELIX.

# Experimental Campaign at PHELIX Setup





# Experimental Campaign at PHELIX Setup





### Solid Hydrogen on Plastic Substrate





### Solid Hydrogen on Plastic Substrate





### PRELIMINARY RESULTS 42 J/208 J @ 200 nm plastic + two layers of solid hydrogen





October 2013 | TUD (IKP) | S. Bedacht | 14

### PRELIMINARY RESULTS

### 42 J/208 J @ 200 nm plastic + two layers of solid hydrogen (continued)



TECHNISCHE UNIVERSITÄT DARMSTADT



October 2013 | TUD (IKP) | S. Bedacht | 15

### **Pure Solid Deuterium**





### **Pure Solid Deuterium**





### PRELIMINARY RESULTS 32 J/160 J @ pure solid deuterium







### Summary



### Summary

- pure targets
- homogenous solid state density
- growing process takes 1–30 min
- target thickness adjustable (µm–cm)
- setup can be implemented at any target chamber
- targets can be made from arbitrary gases
- ▶ first experimenal campaign performed at PHELIX, GSI Darmstadt
- possible applications: proton fast ignition, oncology, secondary beams

### Outlook



### **Future Goals**

- more precise online surface/topology characterization
- optimize target structure for higher particle energies
- accelerate protons/deuterons to energies greater than 100 MeV
- measure the energy loss of heavy-ion beams in a fully ionized plasma

### Acknowledgements



#### Collaborators

Prof. Dr. Dieter Hoffmann Prof. Dr. Markus Roth Dr. Gabriel Schaumann Dr. Jurij Menzel Florian Wagner Alex Ortner Robert Jaeger

#### Alexandra Tebartz Annika Kleinschmidt Katrin Philipp Stephanie Geschwind Victor Schanz *GSI* PHELIX laser team

### **Financial Support**

- ► Federal Ministry of Education and Research, Germany
- ► *HiPER* Project

### The End





### Thank you for your attention!