Proton Beams Produced by Laser Interaction in Italy: from the First Experiences at the INFN FLAME Facility toward the Development of a Multidisciplinary Proton Beam Line (ELIMED)

Dario Giove on behalf of the NTA_SL_LILIA and ELIMED groups

NTA-SL-LILIA (Laser Induced Light Ions Acceleration)

NTA-SL-LILIA LILIA is an experiment of light ions acceleration trough laser interaction with thin metal targets to be done at the SPARC-LAB facility under operation in Frascati.

The main goal is to obtain a beam suitable for injection in other accelerating structure.

Laser Parameters

```
Beam diameter 120mm
~flat top
M2≈1.5
Waist (I/e2)≈ 10µ
contrast≈10<sup>-10</sup>
Raileigh length= 260µ
Pulse duration: 25-35 fs
Max Energy on target: 4J
Long focal length parabola
Max Intensity I=6.8 10<sup>19</sup>W/cm<sup>2</sup> (35 fs) or 9.6 10<sup>19</sup> (25fs)
Short focal length OA Parabola: waist≈2.5µ, I≈1021W/cm2
```

Study and Simulation of the Proton Emission

Scaling in TNSA regime from AlaDyn simulation, theory and Dresda data Emax = k a 1.6 with a ~ 11/2.
For LILIA at the beginning we expect a < 8 e Emax ~ 4 MeV.
At the foreseen FLAME higher power we expect a > 30 e Emax > 30 MeV. With structured targets we can double the energy

Energy evolution for a bare and structured target

Energy distribution $r(E) = N/E_0 e^{-E/E_0}$ $E_0 \approx E_{max}/8$ average energy

NTA_SL_LILIA (2012 and up to December 2013)

A parametric study of the correlation of the maximum TNSA accelerated proton energy, with respect to the following parameters:

Laser pulse energy (in the range 0.1-4 J) Metallic target thickness (in the range 1-10 microns).

In such a frame we would deeply investigate the experimental scale rules within the possibilities offered by the FLAME facility.

Moreover, this will provide the opportunity to get experience in the development of diagnostic techniques and in target optimization.

(

Status @ 7 November 2012

- Mechanical setup assembled and aligned in the experimental chamber
- 4 linear stages and 1 rotation stage (for target and detectors) fully integrated in the main control system
- Start of the tests with the FLAME laser from November 13 2012
- PIN diodes detectors assembled in the interaction chamber for tests on electronic noise

Beam tests from November 13 to December 22

NTA-SL_LILIA

SPARC_LAB Program Advisory Committee Meeting

EBT3 FILM FEATURES A PRECISION 3-LAYER LAMINATED COMPOSITION

Range 0.01-40 Gray

CR-39 is an allyl glycol carbonate plastic that has been widely used as a passive, limited spectral resolution, solid state nuclear track detector (SSNTD)

Target: Al foil. Depth from 12 to 3 μ m

Thin Al foil in front of the gafchromic detectors (3 µm)

Al foil in front of the CR39 detector (16 to 6 µm)

800 KeV protons have a range in Al equal to 10,42μm 1.1 MeV protons have a range in Al equal to 16,00 μm

4 MeV protons have a range in poliethilene (density ' 0,93 g/cm³⁾ equal to 210,64 μ m.

Detectors @ 45 mm from the target

ELSEVIER

Nuclear Instruments and Methods in Physics Research A

journal homepage: www.elsevier.com/locate/nima

Determination of LET in PADC detectors through the measurement of track parameters

M. Caresana a.*, M. Ferrarini a.b, M. Fuerstner c, S. Mayer c

^a Politecnico di Milano, CESNEF, Dipartimento di Energia, via Ponzio 34/3, 20133 Milano, Italy

^b Fondazione CNAO, via Caminadella 16, 20123 Milano, Italy

^c Paul Scherrer Institut (PSI), Radiation Metrology Section, CH-5232 Villigen PSI, Switzerland

May 2013 run

Thomson Parabola during tests with a proton beam at LNS cyclotron

THOMSON SPECTROMETER: Analysis of proton and carbon beams (Q=+1 to + 6) from 0.1 MeV to 10 MeV

NTA-SL_LILIA

SPARC_LAB Program Advisory Committee Meeting

Laser Shot Induced Noise

Very Preliminary

- Background em noise along signal cables (length up to 50 m):
 +-50 mV, 5 MHz, 2 μs, 16 kHz
- Em noise induced by the laser shot on the target: +-1 V, 250 MHz, 200 ns

FIG. 4: Schematic draw of the transport line. $D_A = D_B = 10$ mm, $D_1 = 510$ mm, L = 300 mm, first iris radius = 0.5 mm, second iris radius = 0.6 mm, second iris minimum thickness = 5 mm.

PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS 16, 031301 (2013)

Transport and energy selection of laser generated protons for postacceleration with a compact linac

Stefano Sinigardi, Giorgio Turchetti, Pasquale Londrillo, and Francesco Rossi Dipartimento di Fisica, Università di Bologna and INFN Sezione di Bologna, Via Irnerio, 46–I-40126 Bologna, Italy

Dario Giove and Carlo De Martinis Dipartimento di Fisica, Università di Milano and INFN Sezione di Milano, Via Cervi, 201–I-20090 Segrate (MI), Italy

Marco Sumini

Dipartimento di Ingegneria Industriale, Università di Bologna, Viale del Risorgimento, 2–I-40136 Bologna, Italy, and INFN Sezione di Bologna, Via Irnerio, 46–I-40126 Bologna, Italy (Received 23 May 2012; published 1 March 2013)

Prototype of a solenoid designed for pulsed operations and maximum field of 3 Tesla. The internal diameter is of 50 mm.

The excitation pulse will last nearly 10 microseconds and the related current is of the order of 20 kA.

Basic scheme of the foreseen pulsed high voltage power supply.

The two capacitors named C1 and C2 will charge to a maximum voltage of 20 KV due to the connection to an external standard high voltage, few mA high voltage power supply. The spark gap in the scheme will discharge suddenly the stored energy toward an external solenoid (named load in the picture).

▶ ■ 194% • Q Q Z ♥ Z	[Tek TDS220].CH2 2 V	• 6 uS •	Waveform		
Mask	🔽 Show Mask 🔲 S	Show Bounding Box			
				. Barriet Carton	· · · · · · · · · · · · · · · · · · ·
1.> The factor of a light for straight	\mathbf{X}				an a
222 Thursen with protocol of the state of th		And March 1994	<u>↓</u>	n-hitset-da a-frdua	าสารารสาระกิจันสู่และการสา ⁵ ากรายกา
		+++++++++++++++++++++++++++++++++++++++			
		+			
1) [Tek TD \$220] CH1 500 mV 5 2) [Tek TD \$220] CH2 2 V 5 uk	us	+		1	

WP-1 Target and plasma diagnostic

M-1.1.a: Realization and test of nanostructured and porouses targets up to 1 micron thickness M-1.2.a: Test and data analysis of IC, ICR, SiC and Diamonds using TOF approach at PALS laboratory

(I=10^16 W/cm^2) ->80%

Name and description of the approved proposal @ PALS laboratory:

"High energy proton acceleration from thin advanced targets at PALS"

Experiment subdivision

 1° week: Pure target irradiations & detector preparation;

• 2° week: Irradiation of Nanostructured thin targets in TNSA approach with resonant abs. effects;

 3° week: Investigation of laser-plasma in Nuclear Physics 28

WP-1 Thomson Parabola Spectrometer

M-1.2.b: Upgrading of the Thomson spectrometer

2012 @PALS (Cz)

<u>Next step</u>-> Energy Calibration @ LNS (Tandem proton beam) <u>October 2013</u>

H+

WP-2: 16 Halbach domain quadrupoles triplet

M1.3b: Design and manufacturing of 3 QP based on PM and related movement system (2014)

- → 3 main elements
 - ♦ 70 mm length
 - 30 mm bore
 - 100 mm outer radius
 - ~110 T/m peak gradient
 - 1.6 T maximum field
- → 1 smaller element for increasing the focusing of the central quadrupole (required for higher energy)
 - ♦ 40 mm length
 - 30 mm bore
 - 100 mm external radius
 - ~100 T/m peak gradient
 - 1.4 T maximum field

Halbach Domain - 16 Sectors Magnetic flux intensity and magnetization direction (red arrows)

WP-2: ESS assembling @ LNS

M-2.3.a: Design, Construction and Assembly of the Energy Selector System (ESS)->100%

WP-2: The TARANIS experiment

WP-3: Geant4 simulations and dose evaluation

M-3.1.a: Monte Carlo simulations for the evaluation of dose distribution in the TARANIS configuration

For the Taranis configuration, we have selected two energies: **4** and **6 MeV**. For each energy we have evaluated the energy distribution, the profile, the dose and the fluence of the output beam.

WP-3: Dosimetric system

M-3.3.a: Study and design of a dosimetric system for dosimetry and irradiation of bio samples -

Solutions adopted for relative dosimetry:

- GafChromic films (passive)
- High-rates Transmission chamber (on-line)

Solutions adopted for the absolute dosimetry:

- Faraday cups coupled with:
 - GafChromic/CR39 stacks for energy spectrum (Spectroscopic method) and beam spot measurements at the entrance (passive)
 - Scintillating fibers for energy spectrum measurements (on-line)

WP-3: Faraday Cup

M-3.3.a: Design and development of a dedicated Faraday cup for absolute dose measurements

Optimization of shape, size, material of the cup in order to minimize the uncertainties on absolute dose measurement:

- GEANT4 simulations:
 - minimize the number of the secondary electrons emitted taking into account the effect of:
 - size (cup with respect to guard ring), shape of cup bottom, electric and magnetic fields applied
 - prediction of the beam spot area at different depth and at the bottom of the cup
 - investigation on the cup window to study innovative solution for on-line measurement of the beam spot area

ELIMED in 2014

ELIMED in the ELI project

ELIMAIA beamline in Prague ELI Multidisciplinary Applications of laser-Ion Acceleration

ELIMED-INFN -> Preliminary studies for target, beam handling, dosimetric deliering system and radiobiology for laser-driven particles

Main aims of the ELIMED project

Preparation for the scientific work on the ELIMAIA beam line in Prague

Development of innovative targets for the optimization of the proton emission

Development of innovative beam transport solution and dosimetric system to be used in the new laser-driven beams

Radiobiology studies for these peculiar radiation beams in light of their medical applications (proton therapy)

Main issues of ELIMED: WP-1, WP-2, WP3

Working Groups aims

- Thin target development (structured target and with special microstructures) to obtain proton beams up to 50-60 MeV
- Definition of a strategy bringing to the design and realization of a beam line prototype able to work with laser with specific characteristics:

E \approx 5-7 J; λ =0.8 μ m; $\tau \approx$ 50 fs; spot size \approx 10 μ m (FWHM);

intensity ~ 10exp20-10exp21 W/cm2;

- To handle the produced beam in order to obtain a controlled beam with E≈30 MeV, AE/E=1%; Intensity 10exp7-10exp8 ppb
- Monte Carlo evaluations of the clinical applicabilities of the transported beam
- To realize a complete dosimetric system for absolute and relative dosimetry and to perform the first radiobiology characterizations
- International collaboration network: experimental sessions, share of expertise and instrumentation, etc.

WP-1: Target and holder development

- Study, preparation and characterization, with available laser system, of thin <u>targets</u> (pure material or hydrogen reached or with superficial foam) in single layer or continuous foil configuration for the test with higher power laser systems. Determination of a procedure for the target realization. [06/2014]
- Characterization of studied targets at low power with higher power lasers.
 Preliminary studies of targets with particular geometric configuration [12/2014]
- Study and realization of a single thin (also about 10 nm thick) targets <u>holder</u>, compatible with the low energy diagnostic detectors [6/2014]
- System adjustment for the integration of standard and advanced (solid state detectors) diagnostics [6/2014] and of magnetic optics for an early focalization [12/2014]

Involved units: MI, LNS, ME, LE, RM1

WP-1: PIC simulations

- Simulation of the transport beam line to study also potential coupling with post acceleration systems [2/2014]
- PIC simulations of the studied thin targets [6/2014]
- PIC simulation of the planned experimental session at JKAREN, Nara (J)

```
Power=1.5 PW (30 fs, 45 J)
```

Rep Rate=0.1 Hz

```
Intensity=10^22 - 10^23 W/cm2 [10/2014]
```

- Experimental test of the realized energy selection system (TARANIS facility)
- Realization of the designed quadrupole system [3/2014]
- Study, realization and laboratory tests of a model of the focusing system based on a pulsed solenoid [6/2014]
- Study and simulation of the complete transport beam line: solenoid, quadrupoles and ESS

Involved units: BO, MI, LNS

W.P-2: Laser-plasma diagnostic (I)

- Characterization of the laser-plasma interaction in the TNSA regime using *K*-shell and *Ka* X-ray imaging&spectroscopy (either using Bragg crystals or single-photon detection)
- Visible and UV optical spectroscopy for pre-plasma characterization
- Test of new concept detectors as plasma protons diagnostics:
 - IC and ICR detectors with new geometries and possible array assembling
 - SiC with new metal and depletion layer structures and array assembling
 - \circ $\,$ monocrystal CVD diamond detectors $\,$

X-ray K-shell spectrocopy provides informations on the plasma electron density and temperature; Ka spectroscopy provides informations on the fast electrons beam transport through the target up to the sheath layer

Visible and UV spectroscopy allows the regime of laserplasma interaction to be identified (possible pre-plasma generation, parametric instabilities leading to lower energy coupling to the target, ...)

W.P-2: Laser-plasma diagnostic (II)

Proton beam diagnostics

- Development of a detector based on pixel solid state CMOS module for destructive diagnostics (Milano)

Large area detector: CMOS photodiodes array

- Detector size 25 x 50 mm
- Pixel size 48 micron
- 512 by 1024 matrix of silicon photodiodes
- Dinamic range 85 dB
- Max. frame rate 4.5 fps

- Study and design of an ICT (Integrated Current Transformer) for ultrashort duration (~ps) proton beams (Milano, with LNS-Pisa support)

- Conceptual design/study of a proton beam length measurement diagnostics (possibly based on OTR (Optical Transition Radiation) + streak-camera) (Milano and LNS-Pisa)

Involved units: Milano and Pisa

W.P. – 3 Radiobiological studies and

measurements

Within ELIMED, radiobiological studies will be **exclusively** dedicated to validate the biological feasibility of laser-driven beams for cancer treatment

It is necessary to **compare the biological effects of laser-driven proton beams** (highly pulsed and very high dose rates) **with those from "conventionally" accelerated particle**

beams.

The goal will be to determined by the end of 2014 preliminary values for the efficiency (RBE) of these beams on causing **tumour inactivation** (prostate cancer cells) and **sublethal damage in normal cells** (chromosome aberrations and premature cellular senescence in fibroblasts and endothelial cells), of **importance for risk of secondary cancers and adverse reactions in healthy tissues**

Planned activity for 2014:

- Proof-of-principle irradiations at the <u>TTT-3 Naples</u> tandem accelerator with pulsed proton beams up to 6 MeV (pulse duration: tens of ns, dose rates: tens of Gy min⁻¹) to optimize protocols and assays and at <u>INFN-LNS cyclotron</u> with energies in the therapeutic range with both conventional proton beams and pulsed and very-high dose rate (hundreds of Gy min⁻¹) beams
- □ Irradiations with laser-driven proton beams of up to tens of MeV (peak energy) at <u>TARANIS</u> (UK) and/or <u>LULI</u> (France) facilities

Left: view of the radiobiological set-up at Naples Tandem accelerator; right: senescing cells (top) and FISH-painted chromosomes (bottom)

The obtained data will be essential to determine the potential clinical relevance of laserdriven beams

2013	2014	2015
: gen feb mar apr mag giu lug ago set ott nov di	ic gen feb mar apr mag giu lug ago set ott nov dic BELFAST TEST	gen feb
	LNS-Laser TES	ज]
Gant 2014	WP-1. PIC simulation of the planned experimental session at IKAREN. Nara	0
	WP-1. PIC simulations of the studied thin target	<u>]</u> ts
	WP-1. Study, preparation and characterization of thin target	5
WP-1. Study and realization of a single thin targets holder a	and its integration with standard and advanced diagnostics and magnetic optic	:S
WP-1. Realiz	zation and test of the focusing system (pulsed solenoid and quadrupole system	n)
WP-2. Study an	d design of an ICT for ultrashort duration (~ps) proton beams	
WP-2. Conceptual design/study of a proton be	eam length measurement diagnostics (possibly based on OTR + streak-camera	1)
WP-2. Development of pixel, solid state CMOS detect	tor for destructive diagnostics	
WP-2. Test of ne	ew concept detectors for plasma protons diagnostics (IC, ICR, SiC, CVD diamon	d)
WP-2. Visible a	and UV optical spectroscopy for pre-plasma characterization	
WP-2. Characterization of the laser-plasma interaction in the TNS	ISA regime using K-shell and Ka X-ray imaging&spectroscopy	
WP-3 . MC simulations for the evaluation of dose at the end of the t	transport beamlines for different facilities	
WP-3. Monte Carlo sim	ulations of an innovative Faraday Cup (FC)	
WP-3. Feasibility studies of the ELIME	ED beam line for delivering of clinical beams and related radioprotection studio	25
WP-3. Development of the Faraday Cup an	nd of the Scintillating Proton Spectrometer	
W	/P-3. Realization and test of an integrated system dosimetry and cell irradiation	n
WP-3. Preliminary conclusions on cellular res	ponses by conventional(Naples, LNS) and non conventional (Taranis, LULI) beam	15