

Sub-micrometer spheres for laser driven ion acceleration

Daniele Margarone, PhD

RP3 Leader, ELI-Beamlines Project Institute of Physics of the Czech Academy of Science - PALS Centre Prague, Czech Republic

MAP, 9-10 October 2013, Munich

pro konkurencescho

Proton Acceleration by Enhanced-TNSA

- Experimental results with 100 TW-class laser @ CoReLS-APRI
- Recent experiment with 1 PW-class laser @ CoReLS-APRI
- Perspectives at higher power (and higher intensity!)
- > Targetry, ELIMAIA @ ELI-Beamlines & ELIMED

TNSA vs. enhanced-TNSA

Target geometries

Target morphology

- monolayer of closely packed polystyrene spheres
- 1 μm mylar substrate
- self assembly in water (@ CTU in Prague)

- a) PET-266: 1 μ m mylar + 266 nm polystyrene spheres
- b) PET-535: 1 μm mylar + 535 nm polystyrene spheres
- c) PET-920: 1 μm mylar + 920 nm polystyrene spheres
- d) PET: 1 μm mylar (planar target)

Experimental setup @ CoReLS-APRI

T. M. Jeong et al., J. Korean Phys. Soc. 50 (2007) 34

 Laser parameters
Max. laser energy/power/intensity:

 without PM → 2J, 70 TW, 10²⁰ W/cm²
 with DPM → 1J, 35 TW, 5x10¹⁹ W/cm²

Pulse duration : 30 fs
Wavelength: 805 nm

- Polarization: p
- Standard spot diameter: 5 µm (FWHM)
- main/pedestal contrast:
 - without PM \rightarrow ~10⁷ @ 6 ps
 - with $\underline{\text{DPM}} \rightarrow \sim 5 \times 10^{11} @ 6 \text{ ps}$

Fyzik<u>ální ústav</u>

kademie věd ČR. v. v. i.

Pedestal intensity ~10⁸ W/cm² No laser damage for our nanostructures!!!

pro konkurenceschonnos

Proton/ion beam diagnostics

I.W. Choi et al., Rev. Sci. Instr. 80 (2009) 053302

Proton beam energy distributions

Nanospheres size optimization

Laser-Driven Proton Acceleration Enhancement by Nanostructured Foils

D. Margarone,¹ O. Klimo,^{1,2} I. J. Kim,³ J. Prokůpek,^{1,2} J. Limpouch,^{1,2} T. M. Jeong,³ T. Mocek,¹ J. Pšikal,^{1,2} H. T. Kim,³ J. Proška,² K. H Nam,³ L. Štolcová,^{1,2} I. W. Choi,³ S. K. Lee,³ J. H. Sung,³ T. J. Yu,³ and G. Korn¹
¹Institute of Physics of the ASCR, ELI-Beamlines/HiLASE project, Na Slovance 2, 18221 Prague, Czech Republic
²Czech Technical University in Prague, FNSPE, Brehova 7, 115 19 Prague, Czech Republic
³Advanced Photonics Research Institute, GIST, 1 Oryong-dong, Buk-gu, Gwangju 500-712, Republic of Korea (Received 3 June 2012; published 3 December 2012)

Maximum energy vs. total energy

Main achievements

- Max. proton energy
 - PET: **5.3 MeV** - PET-535: **8.6 MeV**
 - anergy increment: 62
 - energy increment: **62%**
- Relative proton accel. conv. efficiency
 - $\eta_{\text{PET-535}}/\eta_{\text{PET}}$: **6.9** (1-9 MeV)
 - η_{PET-535}/η_{PET}: **10.8** (4-5 MeV) efficiency estimation: 1.4% (PET), 9.4% (PET-535)

Stealth target for ion acceleration!

Experimental results with 100 TW-class laser @ CoReLS-APRI

Recent experiment with 1 PW-class laser @ CoReLS-APRI

- Perspectives at higher power (and higher intensity!)
- > Targetry, ELIMAIA @ ELI-Beamlines & ELIMED

Proton/ion beam diagnostics

3 MeV energy steps, 17 films

pro konkurenceschopnost

In Manospheres optimization @ 280 TW

> Experimental results with **100 TW-class** laser @ CoReLS-APRI

- Recent experiment with 1 PW-class laser @ CoReLS-APRI
- Perspectives at higher power (and higher intensity!)

> Targetry, ELIMAIA @ ELI-Beamlines & ELIMED

Enhanced-TNSA @ 500 TW (?) Different structures (?)

$$P_{L} = 280 \text{TW}; I_{L} \sim 7 \times 10^{20}$$
 $P_{L} = 500 \text{TW}; I_{L} \sim 7 \times 10^{21}$

2D PIC simulations, 15 J, 30 fs, 3 μ m (FWHM), CH₂ (200 n_c electrons density), normal incidence

	max. energy	proton number (28.5; 31.5) MeV	proton number (57; 63) MeV
Planar 1 µm thick	85 MeV	7.7x10 ⁹	1.4x10 ⁹
530nm spheres 1 µm thick	95 MeV	2.2x10 ¹⁰	5.3x10 ⁹
1.6 µm grating 1 µm thick	140 MeV	1.1x10 ¹⁰	9.4x10 ⁹

Courtesy of J. Psikal

Decreasing beam divergence (?)

K. Takahashi et al., Phys. Plasma 10 (2012) 0931102

beamlines

fond v ČE

Experimental results with **100 TW-class** laser @ CoReLS-APRI \geq

- Recent experiment with 1 PW-class laser @ CoReLS-APRI
- Perspectives at **higher power** (and higher intensity!) \geq
- > Targetry, ELIMAIA @ ELI-Beamlines & ELIMED

The ELIMAIA beamline: ELI Multidisciplinary Applications of laser-lon Acceleration

ELIMAIA goals

Realization of a multidisciplinary facility by laser-driven ion beams

- Irradiation of biological and other samples
- Radiation damage on different components
- Demonstration of new irradiation modalities for radiotherapy
- Detectors characterization
- Pump probe investigations
- Proof-of-principle experiments towards future <u>hadrontherapy</u> facilities

What users generally require:

- Wide energy and fluence range
- Homogeneous lateral beam distribution
- Stability in terms of energy and fluence distributions
- Variable beam spot size (from 2 mm up to 40 mm)
- Beam control (diagnostic and dosimetry) with < 5% errors
- Possibility of in-air irradiation
- Different ion species

The ELIMAIA Beamline

 $\stackrel{o}{\longrightarrow}$ Conference collection

2nd ELIMED Workshop and Panel

Catania, Italy 18-19 October 2012

Editors Daniele Margarone, Pablo Cirrone, Giacomo Cuttone and Georg Korn

proceedings.aip.org

645

A successful international collaboration...

h, G. Korn

echnical University in Prague: b, J. Psikal, J. Proska, L. Stolcova, J. Limpouch

T. Mocek

Kim, K.H. Nam, I.W. Choi, J.H. Sung, S.K. I

Physics of the ASCR (ELI-Beamlines and HILASE

^{광주과학기술원} 조단 광양자빔 특수연구동 Ultrashort Quantum Beam Facility

Thank you for your kind attention!

beamlines

eli

pro konkurenceschopnost