



# Production of low density targets for laser driven ion acceleration

I. Prencipe<sup>1</sup>, A. Zani<sup>1</sup>, D. Dellasega<sup>1</sup>, V. Russo<sup>1</sup>, T. Ceccotti<sup>2</sup>,
V. Floquet<sup>2</sup>, A. Sgattoni<sup>1,3</sup>, A. Macchi<sup>1,4</sup>, M. Passoni<sup>1</sup>

<sup>1</sup>Dipartimento di Energia and NEMAS, Politecnico di Milano, Milano, Italy <sup>2</sup>CEA, IRAMIS, SPAM, F-91191 Gif-sur-Yvette, France <sup>3</sup>Consiglio Nazionale delle Ricerche, Istituto Nazionale di Ottica (CNR/INO), Pisa, Italy <sup>4</sup>Dipartimento di Fisica, Università di Pisa, Pisa, Italy

irene.prencipe@polimi.it

ManoLab

#### **INTRODUCTION**

- ▶ LASER-PLASMA INTERACTION IN NEAR-CRITICAL REGIME
- LOW DENSITY TARGETS FOR LASER DRIVEN ION ACCELERATION

### **CARBON FOAMS: PRODUCTION AND CHARACTERIZATION**

- PULSED LASER DEPOSITION (PLD)
- MORPHOLOGICAL AND NANOSCALE ANALYSIS
- DENSITY MEASUREMENT

### **ACCELERATION EXPERIMENTS**

MULTI-LAYERED TARGETS

ManoLab

#### **INTRODUCTION**

- LASER-PLASMA INTERACTION IN NEAR-CRITICAL REGIME
- LOW DENSITY TARGETS FOR LASER DRIVEN ION ACCELERATION

#### **CARBON FOAMS: PRODUCTION AND CHARACTERIZATION**

- PULSED LASER DEPOSITION (PLD)
- MORPHOLOGICAL AND NANOSCALE ANALYSIS
- DENSITY MEASUREMENT

#### **ACCELERATION EXPERIMENTS**

MULTI-LAYERED TARGETS

## Laser-plasma interaction in near-critical regime ManoLab

### **CRITICAL DENSITY**

$$n_c = \frac{m_e \omega^2}{4\pi e^2} \implies \rho_c \approx mg/cm^3$$
 for  $\lambda \cong 1 \ \mu m$ 

#### $n < n_c$ UNDER-DENSE PLASMA

EM waves propagation in plasma allowed: volume interaction mechanisms



Electron acceleration via wavebreaking

#### $n > n_c$ over-dense plasma

EM waves propagation only in a skin layer: surface interaction mechanisms



Vacuum heating  $F = -2eE_L\sin(\vartheta)$ 

#### J × B heating

 $F = F_{PM, DC} + f(x) \cos(2\omega t)$ if s-polarized wave or normal incidence

P. Gibbon, Short Pulse Laser Interaction with Matter, Imperial College Press, (2005) A. Macchi, A Superintense Laser–Plasma Interaction Theory Primer, Springer (2013)

Garching, 10<sup>th</sup> October 2013

**Irene Prencipe** 

## Laser-plasma interaction in near-critical regime ManoLab

### **CRITICAL DENSITY**

$$n_c = \frac{m_e \omega^2}{4\pi e^2} \implies \rho_c \approx mg/cm^3$$
 for  $\lambda \cong 1 \ \mu m$ 

#### $n < n_c$ UNDER-DENSE PLASMA

EM waves propagation in plasma allowed: volume interaction mechanisms

#### $n > n_c$ over-dense plasma

EM waves propagation only in a skin layer: surface interaction mechanisms

#### $n \approx n_c$ NEAR-CRITICAL PLASMA

- volume and surface interaction mechanisms
- higher absorption efficiency
- enhanced generation of hot electrons

L. Willingale et al. *Phys. Rev. Lett* **96**, 245002 (2006); **102**, 125002 (2009) S. S. Bulanov et al. *Phys. Plasmas* **17**, 044105 (2010)

Garching, 10<sup>th</sup> October 2013

**Irene Prencipe** 

## **Enhanced Target Normal Sheath Acceleration**



Garching, 10<sup>th</sup> October 2013

Irene Prencipe

Higher number

#### POLITECNICO DI MILANO

A. Sgattoni et al., Phys. Rev. E, 85 036405 (2012)

**M** NanoLab

## **Enhanced Target Normal Sheath Acceleration**

ManoLab

#### Multi-layered targets: 2D PIC simulations ALaDyn code







OPTIMAL THICKNESS RANGE FOR GIVEN FOAM DENSITY AND LASER PARAMETERS



i.e. 10  $\mu$ m for n<sub>c</sub> and  $\lambda$ =0.8  $\mu$ m

for further information see also A. Sgattoni's talk!

A. Sgattoni et al., Phys. Rev. E, 85 036405 (2012)

Garching, 10<sup>th</sup> October 2013

Irene Prencipe

## **Other acceleration regimes**

### **Hole Boring Radiation Pressure Acceleration**





Velocity scaling

non relativistic limit  $v_{HB} \sim n_e^{-1/2} \Rightarrow \varepsilon_{max} \sim n_e^{-1}$ 

ultrarelativistic limit

$$v_{HB} \approx c \Rightarrow \varepsilon_{max} \sim n_e^{-1/2}$$

### **Collisionless Shock Acceleration**



**Shock**: over-critical plasma shock wavefront velocity  $v_{shock} \approx v_{HB}$ 

**Velocity scaling**:  $v_i = 2v_{shock}$ 

Ion reflection condition: intensity threshold proportional to ion density



slightly over-dense targets

NanoLab

A. Macchi, M. Borghesi, M. Passoni, Rev. Mod. Phys., 85 751 (2013)

**NanoLab** 

#### Production of variable density carbon foams

- indipendent control of density/thickness/uniformity
- good adhesion to a solid substrate

### Characterization of low density carbon foams

development of a reliable technique to measure very low density values

#### **Employment of low density targets in acceleration experiments**

test on multi-layered targets for enhanced TNSA

ManoLab

#### **INTRODUCTION**

- ▶ LASER-PLASMA INTERACTION IN NEAR-CRITICAL REGIME
- LOW DENSITY TARGETS FOR LASER DRIVEN ION ACCELERATION

### **CARBON FOAMS: PRODUCTION AND CHARACTERIZATION**

- PULSED LASER DEPOSITION (PLD)
- MORPHOLOGICAL AND NANOSCALE ANALYSIS
- DENSITY MEASUREMENT

### **ACCELERATION EXPERIMENTS**

MULTI-LAYERED TARGETS

## **Production of carbon foams by PLD**

**NanoLab** 



## **Morphological analysis**

ManoLab

#### **Scanning Electron Microscopy**

### Argon



30 Pa

100 Pa GAS PRESSURE

150 Pa



#### Helium

Garching, 10<sup>th</sup> October 2013

Irene Prencipe

## **Morphological analysis**

ManoLab

#### **Scanning Electron Microscopy**

#### Argon



30 Pa

100 Pa GAS PRESSURE

150 Pa



#### Helium

Garching, 10<sup>th</sup> October 2013

Irene Prencipe

## Nanoscale analysis

ManoLab

#### **Scanning Transmission Electron Microscopy**



#### Raman spectroscopy





Nearly pure sp<sup>2</sup> network of topologically disordered domains : odd-membered rings and few chain-like structures

Ordered graphitic domains dimension ~ 2nm

#### A. Zani et al., Carbon, 56 358 (2013)

## **Thickness assessment**

**NanoLab** 

#### **Cross-sectional SEM images**



## **Density measurement**

ManoLab

**Thickness assessment** 

**Areal density measurement** 

**DENSITY EVALUATION** 

### **Thickness assessment:** cross-sectional SEM images



### Areal density measurement

Conventional quartz-crystal microbalance (QCM) technique unreliable for densities under 20 mg/cm<sup>3</sup>

### new technique based on Energy Dispersive X-Ray Spectroscopy (EDXS)

Garching, 10<sup>th</sup> October 2013

Irene Prencipe

## **Areal density measurement**

**NanoLab** 

### Energy Dispersive X-Ray Spectroscopy (EDXS)





Garching, 10<sup>th</sup> October 2013

**Irene Prencipe** 

## **Areal density measurement**

ManoLab

### **Energy Dispersive X-Ray Spectroscopy (EDXS)**





## **Results**

**NanoLab** 





**Irene Prencipe** 

ManoLab

#### **INTRODUCTION**

- ▶ LASER-PLASMA INTERACTION IN NEAR-CRITICAL REGIME
- LOW DENSITY TARGETS FOR LASER DRIVEN ION ACCELERATION

### **CARBON FOAMS: PRODUCTION AND CHARACTERIZATION**

- PULSED LASER DEPOSITION (PLD)
- MORPHOLOGICAL AND NANOSCALE ANALYSIS
- DENSITY MEASUREMENT

#### **ACCELERATION EXPERIMENTS**

MULTI-LAYERED TARGETS

ManoLab

#### **Experimental setting**



Garching, 10<sup>th</sup> October 2013

#### LASER PULSE

 $τ_L = 25 \text{ fs}$   $E_L = 2 \text{ J}$   $I_L = 5 \times 10^{16} - 5 \times 10^{19} \text{ W/cm}^2$   $w_0 = 3.5 - 150 \text{ μm}$   $λ = 0.79 \text{ μm} \implies ρ_c = 5.7 \text{ mg/cm}^3$ Low contrast  $10^9$  (LC) High contrast  $10^{12}$  (HC)

#### **MULTI-LAYERED TARGETS**

Al foil 1.5  $\mu$ m (HC) – 10  $\mu$ m (LC) C foam 12  $\mu$ m (HC) – 23  $\mu$ m (LC)

### **Results: maximum energy of accelerated ions**



**Irene Prencipe** 

#### POLITECI

ManoLab



#### I>10<sup>18</sup> W/cm<sup>2</sup>

Complete foam ionization (C<sup>6+</sup>) slightly over-critical plasma TNSA-like scheme

comparable maximum proton energy (bare vs multi-layered target)

### **2D PIC SIMULATIONS**

τ = 25 fs a = 2-4: focal spot 3-12 μm a = 0.5-1: focal spot 12 μm (see also A. Sgattoni's talk)

## TWO INTERACTION REGIMES

#### I<10<sup>18</sup> W/cm<sup>2</sup>

Partial foam ionization  $(C^{2+}/C^{4+})$ sub-critical plasma (0.5 n<sub>c</sub>)  $e_{hot}^{-}$  from volume interactions

higher proton energy with foam-attached targets

Garching, 10<sup>th</sup> October 2013

Irene Prencipe

**NanoLab** 



### **2D PIC SIMULATIONS**

 $\label{eq:constraint} \begin{array}{l} \tau = 25 \text{ fs} \\ a = 2\text{-}4\text{: focal spot 3-12 } \mu\text{m} \\ a = 0.5\text{-}1\text{: focal spot 12 } \mu\text{m} \\ \mbox{(see also A. Sgattoni's talk)} \end{array}$ 

### TWO INTERACTION REGIMES

I>10<sup>18</sup> W/cm<sup>2</sup>

Complete foam ionization (C<sup>6+</sup>) slightly over-critical plasma TNSA-like scheme

comparable maximum proton energy (bare vs multi-layered target)



Garching, 10<sup>th</sup> October 2013

Irene Prencipe

ManoLab



## **TWO INTERACTION REGIMES** I<10<sup>18</sup> W/cm<sup>2</sup> Partial foam ionization $(C^{2+}/C^{4+})$ sub-critical plasma (0.5 n<sub>c</sub>) e-hot from volume interactions **ENHANCED PROTON ACCELERATION REGIME**

**2D PIC SIMULATIONS** 

a = 2-4: focal spot 3-12  $\mu$ m

a = 0.5-1: focal spot 12  $\mu$ m

(see also A. Sgattoni's talk)

 $\tau = 25 \text{ fs}$ 

Garching, 10<sup>th</sup> October 2013

Irene Prencipe

## Conclusions...

**Production of carbon foams by PLD** 

- density controlled tuning gas pressure (down to 3 mg/cm<sup>3</sup>)
- $\searrow$  thickness controlled selecting deposition time (10 150  $\mu$ m)
- random porous morphology
- good uniformity and adhesion on substrate

#### Characterization of low density carbon foams

new method based on EDXS for areal density measurement

### Test of multi-layered targets in acceleration experiments (TNSA scheme)

- enhanced maximum proton energy for moderate intensities (< 10<sup>18</sup> W/cm<sup>2</sup>)
- possibility to enhance maximum proton energy for high intensities with optimized target properties

**NanoLab** 

## Conclusions...

**Production of carbon foams by PLD** 

- density controlled tuning gas pressure (down to 3 mg/cm<sup>3</sup>)
- $\searrow$  thickness controlled selecting deposition time (10 150  $\mu$ m)
- 🔰 🛛 random porous morphology
- good uniformity and adhesion on substrate

### Characterization of low density carbon foams

new method based on EDXS for areal density measurement

### Test of multi-layered targets in acceleration experiments (TNSA scheme)

- enhanced maximum proton energy for moderate intensities (< 10<sup>18</sup> W/cm<sup>2</sup>)
- possibility to enhance maximum proton energy for high intensities with optimized target properties

## ... and perspectives

- **b** more satisfactory control of foams properties
- other materials (i.e. hydrogenated carbon foams)
- target testing in further acceleration experiments

NanoLab

Thank you

ManoLab

Alessandro ZANI

David DELLASEGA

Valeria RUSSO

↘ Tiberio CECCOTTI

Vincent FLOQUET

Andrea SGATTONI

Sector Secto

Matteo PASSONI









ManoLab



**Irene Prencipe** 

#### Garching, 10<sup>th</sup> October 2013

### Raman spectroscopy of carbon films

- amorphous carbon (a-C): mixture of sp, sp<sup>2</sup>, sp<sup>3</sup> phases
- Raman spectrum of a-C dominated by sp<sup>2</sup> features: G and D peaks
- Raman spectrum of a-C controlled by the order, not by the amount of sp<sup>2</sup> phase and only indirectly by sp<sup>3</sup> fraction



Ferrari AC and Robertson J, Phys. Rev. B 61 (2000) 14095



29

**Irene Prencipe** 

ManoLab





- Similar Raman spectra, typical of a-C, at any pressure, both for argon and helium
- Some differences in <u>peak</u> <u>positions</u> and <u>relative</u> <u>intensities</u>
- Fitting procedure
  - Asymmetric Breit-Wigner-Fano (BWF) function for G peak
  - Lorentzian function for D peak [Ferrari AC, Robertson J, Phys. Rev. B 61 (2000) 14095]

A. Zani et al. Carbon 56, 358 (2013)

#### **Raman spectra interpretation**

**NanoLab** 





[Robertson J, Mat. Sci.&Eng R 37 (2002) 129]

- Nearly pure sp<sup>2</sup> network of topologically disordered domains
- Some loss of aromaticity
- Odd-membered rings and few chain-like structures
- From I(D)/I(G) ~ 0,86 → L<sub>a</sub> < 2nm (dimension of ordered graphitic domains)

## Role of gas flux in the deposition chamber

ManoLab

#### **SEM images**



#### 0.03 mg/s TRANSVERSE FLOW

9 mg/s DIRECTIONAL FLOW

The presence of a directional flow increases the surface uniformity