

Innovative handling and transport solutions for laser-driven ion beams

Valentina Scuderi on behalf of the ELIMED Collaboration

Targetry for Laser-driven Proton (Ion) Accelerator Sources: First Workshop Institute for Advanced Study (IAS), Garching, Germany, 9–11 Oct 2013

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

ELI-Beams, ELIMAIA beam-line and the ELIMED idea e

ELIMAIA beamline in Prague **ELI** Multidisciplinary Applications of laser-Ion Acceleration

Why ELIMAIA?

Realization of a facility at ELI-Beamlines

as first User's beam line to study the laser-driven proton (ion) application:

- Irradiation of biological and other samples
- Radiation damage on different components
- Detectors characterization
- Pump probe investigations
- Demonstration of new irradiation modalities for radiotherapy

ELIMAIA First Phase

 Investigating the possibility to use the laser-driven ion beams generated at ELIMAIA for *Hadrontherapy* application:

\Rightarrow a good candidate for a demonstration-case

- A medical application is the most demanding in terms of beam characteristics and performances. It will require:
 - ➤Target investigation
 - Beam delivering system
 - Diagnostic tools suitable for non-conventional beams
 - Innovative technique for absolute and relative dosimetry, radiobiology

Hadrontherapy, a potential user case di

beamlines

Gantries

Beam Transport System

Today

...and a possible future for laser-driven based hadrontherapy facilities ?

Spread is limited as respect conventional facility:

- High complexity for the beam production, acceleration and transport
- High cost: 150-200 M€, ~70 M€ for the eye therapy

Why laser-driven proton beams?

- > Compactness
- Cost-reduction
- > Innovative treatment modalities:
 - Variable energies in the accelerator (no degraders needed)
 - Short beam pulses (very useful for fast scanning and to reduce organ motion issues)

Synchrotron Accelerator

Typical laser-driven ion beam characteristics eli

Benefits

- > Large accelerating field (> GV/m)
- High flux and high dose-rate per bunch: ~ 10⁹ Gy/sec
 (~ 10 Gy/sec maximum for conventional accelerators)

Challenges

- Very short bunch duration: < 100 psec
 (> 5 nsec for conventional accelerator)
- > Tunable energy spectrum
- > Significant angular divergence (±25°)

K. Zeil et al., New Journal of Physics 12 (2010) 045015

The future ELIMAIA beamline

beamlines

Beam Handling and Diagnostic

Goal: study of new particle transport solutions to obtain a beam suitable for multidisciplinary applications

Beam transport ideas

Tunably

deliver beam of different energies, energy spread and species

Large acceptance

Control the large chromatic emittance due to the high energy spread of the transported beam

Modularity

Flexibility to meet different experimental set-up and new ideas for Users experiments

•<u>Cost effective</u>

Use of only conventional device

Beam transport ideas

Possible layout of collecting and transport sections

Beam handling and transport solutions AIP Conf. Proc. 1546, pp. 34-43;

ČR. v. v. i.

Beam transport ideas: The Energy Selection System (ESS)

- > Final and finest step in the energy selection
- **ESS Prototype already developed @ LNS-INFN:**
- •Wide energy range (1-60 MeV)
- Controlled energy spread (1-30 %)
- Compact design
- Passive magnetic elements

ESS prototype: working principles di

beamlines

- > Transversal moving of the slit permits the energy selection
- Transversal moving of dipoles #2 and #3 to decrease the selectable low energy limit
- Longitudinal moving of dipole #4 to compensate the magnetic field asymmetries of the whole structure

ESS prototype realization @ LNS (CT) eli

Design, Construction and Assembly of the ESS

Status of the ESS prototype @ LNS (CT)

Magnetic fied profiles measured on the 3 axes along the radial plane

beamlines

EBT3 GafChromic

April 2013: First experimental test in air on the ESS prototype @ CATANA using a 62 MeV proton beam delivered by the Superconductive Cyclotron

ESS Geant4 simulation

Monte Carlo Simulation of the ESS

ESS simulation: Magnetic field treated with the hard-edge approximation

Entrance energy 0-80 MeV Beam shape Uniform First collimator hole size 3 mm (diameter) Slit hole size 1 mm Slit Material W, 6 mm thick Final collimator hole size 1 mm (diameter) Window material Kapton

Monte Carlo Simulation for the Transport Beamline AIP Conf. Proc. 1546, pp. 63-69

> evropský sociální

ond v ČR

INVE,

I VENUL V

ESS calibration @ LNS September 2013 di Meanlines

Calibration performed using the proton beam delivered by the TANDEM at LNS Proton energies: 4.5 - 12 MeV

Experimental run aims:

- Calibration of the slit position as function of the beam energy
- > 4° dipole position calibration
- Beam profile
- > Transmission efficiency
- Validate ESS simulation

Monte Carlo activity with Geant4

- Design and optimization of the ELIMED beamline
- Energy selection system
- > Transport beam line optimization
- > Irradiation approach
- Radioprotection and dosimetry

• Simulation of the available test-site facility TARANIS (UK), LULI (F), JAEA (Japan) for an accurate delivered dose evaluation

The TARANIS experiment

Dosimetry and radiobiology

Study and design of a dosimetric system for dose measurements and irradiation of bio-samples

Dosimetric system

beamlines

Solutions adopted for relative dosimetry:

- GafChromic films (passive)
- High-rates Transmission chamber (on-line)

Solutions adopted for the absolute dosimetry:

- Faraday cups coupled with:
 - GafChromic/CR39 stacks for energy spectrum and beam spot measurements at the entrance (passive)
 - Scintillating fibers for energy spectrum measurements (on-line)

A Conference collection

2nd ELI MED Workshop and Panel, 18-19 October 2012 @I NFN-LNS, Catania

Thank you

2nd ELIMED Workshop and Panel

Catania, Italy 18-19 October 2012

Editors Daniele Margarone, Pablo Cirrone, Giacomo Cuttone and Georg Korn

proceedings.aip.org