ENHANCED LASER-PLASMA PROTON ACCELERATION USING FOAM-ATTACHED AND GRATING TARGETS

Andrea Sgattoni

Politecnico di Milano and INO-CNR Pisa Italy

COLLABORATORS

These experiments are a collaboration with

- Politecnico di Milano Italy
- National Institute of Optics INO-CNR Pisa Italy
- CEA SPAM Gif-sur-Yvette Frances
- LULI Ecole Polytechnique Paris France
- Czech Technical University, Prague Czech Republic

TARGET NORMAL SHEATH ACCELERATION: TARGET DESIGN

TNSA well established

- Intense laser pulse on solid foil
- Electron *heating* and expansion
- Sheath field accelerates surface impurities

To improve acceleration

- Laser parameters
- Laser-target coupling

Target design

- Structured, hollowed, curved or multlayer targets improve the ion acceleration
- Issues: stability, cost, reliability, manufacturing

2 designs tested @CEA Paris

- High contrast Ti:Sa laser
- 1. *Carbon foam:* low density + aluminium foil
- 2. Grating: plastic foils engraved front surface

FOAM - COVERED TARGET

Nanostructured Carbon foam on Aluminium

FOAM-COVERED TARGETS

Idea: 2 layers target Low density *foam* layer ($\sim n_c$) on thin overdense plasma

> Improved laser absorption and acceleration

Challenges foam layer

- •Nhlown chemsity. EnfewPlang/cm(2010) Sgattoni et. al. Phys. Rev. E (2012) • Adhesion to solid foil
- Robustness to prepulse

Target manufacture

- @NANOLAB POLIMI: *Pulsed Laser Deposition*
- Nanostructured Carbon *grown* on aluminium

Experimental results

- Foam withstanded the prepulse
- Within tested intensity $10^{16} \div 3 \cdot 10^{19} \,\text{W/cm}^2$ acceleration enhacement @ $I < 10^{18} \,\text{W/cm}^2$

BASIC CONFIGURATION

Proposed target

- near critical plasma $n_e \sim n_c$ $l_f \simeq 1 \div 10 \mu m$ + thin solid target $n_e \sim 100 \text{ s} n_c$ $l_f \simeq 0.5 \mu m$
- Laser-foam: volume interaction

Simulations results $I \gtrsim 10^{19} \,\text{W/cm}^2$ • High absorption ⇒ more energetic electrons at higher energies
 • Improved acceleration ⇒ E_p^{max} up to 3 times higher than simple target

t = 50 fs

60

-60 -10

рх

1e+22

1e+21

1e+20

1e+19

2D PIC simulation
Laser:
P-pol.
$$\tau_p = 25$$
fs $a_0 = 10$ $w_0 \simeq 3 \mu m$
Target:
C⁶⁺ (8 μ m, 1 n_c) + Al⁹⁺ (0.5 μ m, 40 n_c)
+H⁺ (50nm, 8 n_c)

t = 66 fs

2D PIC simulation *Laser: P*-pol. $\tau_p = 25$ fs $a_0 = 10$ $w_0 \simeq 3 \mu m$ *Target:* C⁶⁺ (8 μ m, 1 n_c) + Al⁹⁺ (0.5 μ m, 40 n_c) +H⁺ (50nm, 8 n_c)

t = 83fs

2D PIC simulation *Laser: P*-pol. $\tau_p = 25$ fs $a_0 = 10$ $w_0 \simeq 3 \mu m$ *Target:* C⁶⁺ (8 μ m, 1 n_c) + Al⁹⁺ (0.5 μ m, 40 n_c) +H⁺ (50nm, 8 n_c)

t = 100 fs

3D PIC CAMPAIGN (IN PROGRESS)

 $\begin{array}{ll} Laser: P\mbox{-}p\mbox{-}p\mbox{-}25fs & a_0 = 10 & w_0 \simeq 3 \mu m \\ \mbox{Target: } {\rm C}^{6+}\ (12 \mu m, 1 n_c) + {\rm Al}^{9+}\ (0.5 \mu m, 40 n_c) + {\rm H}^+\ (50 nm, 8 n_c) \end{array}$

Target for Laser-Driven Ion Acceleration 2013

EXPERIMENTAL SETUP @ CEA SACLAY

PROTON CUT-OFF ENERGY

2D PIC SIMULATIONS

- $a_0 > n_e/n_c$ FT and ST: similar energy
- $a_0 \sim n_e/n_c$ laser is reflected by the foam ~ no proton acceleration
- Underdense foam considerable advantage over ST

FOAM TARGET: CONCLUSIONS

New target production

- PLD: production of innovative multilayer targets
- Flexible and reliable at low contrast too

Proton energy enhacement

- Enhanced proton acceleration at moderate/low intensities $I < 10^{18}\,{\rm W/cm^2}$
- @ $I_{\text{max}} \simeq 3.5 \cdot 10^{19} \,\text{W/cm}^2$ the foam layer with the

lowest areal density available is too high

PIC results

 Support and justify experimental results
 Forsee a good working point for +10µm foam: *I* ≥ 10²⁰ W/cm²

Future works

- Longer and/or more intense pulses
- New targets with different foam thickness and density

GRATING TARGET

Mylar with regular engraving

GRATING AND SURFACE PLASMA WAVES

Surface plasma waves Solid foils with periodic surface modulation may allow resonant excitation of **Surface Waves (SW)**

Surface fragility Previous investigations modest intensities $I \lesssim 10^{16} \text{W/cm}^2$ (preserve structures)

High contrast + Grating target

- Double Plasma Mirror: $I > 10^{19} \text{ W/cm}^2$ contrast ~ 10^{12}
- Engraved MYLAR[™] foils

Grating effects at the expected angle

- The **grating** widthstanded the laser prepulse
- Absorption enhancement at **resonant incidence angle**

T. Ceccotti et.al. accepted on PRL <u>arxiv.org/abs/1310.2755</u>

GRATING SETUP

20 MICRON: PROTON MAXIMUM ENERGY

Proton cut-off energy varying incidence angle

- While PT show an expected variation $\mathcal{E}_p \propto 1/\cos\theta$ (dashed)
- GT clearly lead to local maximum at 30° (resonant angle)

SURFACE WAVE SIGNATURE

RCF STACK: GRATING, MYLAR 20 MICRON

 On selected shot a 3 RCF stack was placed around With High Contrast (HC)
 Each case: results of 3 double laser reflection: 0 and 1 diffraction orders

2D PIC: PROTON ENERGY & ABSORPTION

Proton cut-off energy

Absorbed energy

GRATING TARGET: CONCLUSIONS

High intensity high contrast I_{max} ≈ 2,5 · 10¹⁹ W/cm² & high contrast
o Grating integrity for each thickness

Proton acceleration Clear enhacement at resonant angle at **relativistic intensity** Evidence of surface waves excitation

PIC results

Qualitative agreement with exp. Suggest the presence of a Surface Wave

Future Works

Test grating with different (45°) resonant angle
Higher intensity laser pulse

THANK YOU