

Laser Plasma Targetry

Smallscale gas jets at a near-critical level

MAP Workshop Munich, 11/10/2013

Source LAB

Laser Plasma Technologies

François Sylla

SourceLAB: Overview

Quicker access to your physics and applications

Origin Value offer Skills and Expertise

Spin-off of the Laboratoire d'Optique Appliquée (LOA) - 2013

- Precision targetry for laser-plasma interaction
- Secondary sources of particles and radiations
- Temporal laser contrast cleaning devices

- Laser-plasma targetry first specialized supplier
- Innovative design for reliable performances
- Broad expertise on all main components of the laser-plasma accelerator (intense laser, beam transport, interaction, detection)

Source LAB

Founders

Technical Director Dr. Aurélien Ricci CEO Dr. François Sylla

Business Developer Guillaume Bouchon

Scientific committee

Prof. Victor Malka Dr. Rodrigo Lopez-Martens Prof. Antoine Rousse, LOA Director

Strategic committee

Dr. Michel Mariton, CEO Horiba Jobin-Yvon Séverine Redon, CEO Jacobacci Partners Paris Prof. Jacques Lewiner, ESPCI-ParisTech Scientific Director

. . .

Partners

loa

Product line (1/4)

Quicker access to your physics and applications

Adjustable Gas Cells SL-ALC

Performances

- On-line adjustable plasma length
- Micrometric precison
- Suitable for optical diagnostics

Examples of Applications

- High energy electron acceleration
- Fine control of the injection

Reference

 Corde et al, Nat. Com., 4 1501 (2013)

Product line (2/4)

Quicker access to your physics and applications

High Precision Positioner SL-ST-1000

Performances

- kHz repetition rate
- Micrometric passive stability
- Nanometric active stability

Examples of Applications

- Attosecond science
- kHz plasma mirror

References

- Wheeler et al, Nat. Phot, 6 (2012)
- Veltcheva et al, PRL, 108, 075004 (2012)
- Borot et al, Nat. Phys, 8 (2012)

11/10/2013

Product line (3/4)

XPW Contrast Filter

SL-XPW

Quicker access to your physics and applications

Performances

- Contrast enhancement ratio of 10³
- Excellent spatial profile by hollow core fiber filtering
- Easy-to-align and robust

Examples of Applications

- fs-pulse contrast enhancement (>three order)
- fs-pulse post compression (>twofold)
- Generation of high contrast fewcycle pulses

References

- Ricci et al, RSI, 84, 043106 (2013)
- Ricci et al, Opt. Exp, 21 9711 (2013)

19/06/2013

SourceLAB | Laser Plasma Technologies

Product line (4/4)

Quicker access to your physics and applications

Gas Jet Systems SL-GT-10

Performances

- Overcritical densities
- Submillimetric plasma size
- Fast-switching valves

Examples of Applications

- High energy ion acceleration
- Plasma microscopy

References

- Sylla et al, PRL, 110, 085001 (2013)
- Sylla et al, PRL, 108, 115003 (2012)
- Sylla et al, RSI, 83, 033507 (2012)

11/10/2013

Motivations

Quicker access to your physics and applications

Laser-Ion acceleration in a controllable way

- What is the plasma gradient scale length ?
- What does happen to the laser pulse in this gradient ?
- How is laser energy deposited to fast electrons ?
- What does happen to the fast electrons as they propagate ?
- How do the fast electrons transfer their energy to the ions ?
- How is ion acceleration sustained ?

Possible strategy: high-density smallscale gas jets

Quicker access to your physics and applications

- Gas jet: reproducible object, potentially high repetition rate
- Density: very efficient coupling between laser and electrons close de n_c
- Smallscale (< 1mm) : access to plasma microscopy with visible fs-light (2ω shadow-interferometry)

?

Low density (few percent of n_c), millimeter scale, low repetition rate

Innovation process

Quicker access to your physics and applications

Typical performances

Quicker access to your physics and applications

11/10/2013

Laser plasma experiment setup

E=800 mJ, τ=30 fs, a₀~2.5

spatial resolution:
 better than 1.5 μm

temporal resolution:
 ~30 fs (integrated)

Laser propagation in underdense plasma

Quicker access to your physics and applications

■ n_e~2-3% n_c

T=0.3-100 ps

Plasma magnetization

Electromagnetic soliton/vortex excitation

Quicker access to your physics and applications

■ n_e~10% n_c

Sylla et al, PRL, 108, 115003 (2012)

Laser collapse

Quicker access to your physics and applications

n_e∼ n_c

SourceLAB | Laser Plasma Technologies

How to reduce the plasma size ?

Quicker access to your physics and applications

Simulation vs experiment

Quicker access to your physics and applications

 Density 200μm-400 μm (Phasics) 300 bar Argon, 50 μs exposure

Density 200μm-400 μm (ANSYS) 300 bar Argon

11/10/2013

Interesting feature ? (1/3)

 Density 200μm-400 μm (Phasics) 300 bar Argon, 50 μs exposure

 Shadowgraphy 200μm-400 μm (Phasics) 300 bar Argon, 50 μs exposure

Interesting feature ? (2/3)

Quicker access to your physics and applications

 Density 200μm-400 μm (Phasics) 300 bar Argon, 50 μs exposure 300

400

10 um 50 um

150 um

200 um

Interesting feature ? (3/3)

 Density 200μm-400 μm (Phasics) 300 bar Argon, 50 μs exposure

- High-density smallscale gas jets are suitable tools for the exploration of the near-criticical regime.
- Robust and well characterized and understood (SL-GT-10 item).
- Ion acceleration (as a beam) is to be demonstrated: length, gradient issues.
- Shock nozzles should be investigated in depth in the near-future.

Source LAB

Laser Plasma Technologies

François Sylla

(+33) 1 69 31 98 30
sylla@sourcelab-plasma.com
www.sourcelab-plasma.com