

High Accuracy Microtargetry System (HAMS)

Stephanie Tomlinson 10/10/13

Martin Tolley, Chris Spindloe, Nicola Booth, Dan Symes, Paul Holligan, Dave Rathbone, Matthew Beardsley, Michael Phillips, Dave Wilshire

Ultimate Goal

Z Positioning Specification

- F2 parabolic mirror
- 2 micron diameter spot size
- Z motion tolerance defined by the Raleigh range

The tolerable range for the Z motion for each target is ±4µm.

X, Y Positioning Specification

- Target Diameter 300 µm
- Angular offset to beam at least 30°
- Target wafer housing should not interfere with interaction

 An X and Y tolerable range of ±10µm is sufficient for each target.

What prevents this occurring?

Accumulation of positional errors in:

Target

 Mounting of Targets

Motion Control Stages

Approaches to Managing Errors

- 1) Minimise errors in all components and interfaces to a level below the specification tolerance
- 2) Characterise the position of targets prior shooting and run program to compensate for positional errors

3) Real time adjustment of target position between high repetition rate shots

Reducing Sources of Errors 2.5D Targets, Silicon Wafer Target Target Arrangement, Mounting of Materials, Design for **Targets Precision Machining**, Machining Techniques, **Assembly Devices** Motion Control Stages Alignment Methodology, Stage Specification, **Abbe Effects** Science & Technology Facilities Council

Alignment Methodology

Motion Control Stages

Translation Stages

- X
- Z Tripod
- U
- V
- Y

Rotation Stage

• W

Designed to suit application

Common to any system

- F2 Laser (top target)
- 337mm Max Height
- Objective Lens
- Line of Sight
- 260 x260mm Footprint

Motion Control Stages

AXIS	MINIMUM INCREMENTAL	Key Values				
NAME	MOTION	TRAVEL	RESO		Repeatability	Accuracy
Z	< 50 nm	100 mm	~ 4.88 nm		< +/- 100 nm	+/- 2um / 25mm
Х	< 50 nm	100 mm	~ 4.88 nm		< +/- 100 nm	+/- 2um / 25mm
Y	< 50 nm	24 mm	~ 4.88 nm		< +/- 100 nm	+/- 2um / 5mm
U	< 0.06 mdeg	+/- 4.4 deg	~ 0.02 arc-sec	(~ 0.006 mdeg)	< +/- 0.5 arc-sec	+/- 20 arc-sec
V	< 0.06 mdeg	+/- 4.4 deg	~ 0.02 arc-sec	(~ 0.006 mdeg)	< +/- 0.5 arc-sec	+/- 20 arc-sec
Vb	< 0.06 mdeg	+/- 35 deg	~ 0.04 arc-sec	(~ 0.011 mdeg) \	< +/- 0.5 arc-sec	+/- 30 arc-sec
W	< 0.06 mdeg	360 deg cont.	~ 0.04 arc-sec	(~ 0.011 mdeg)	< +/- 0.5 arc-sec	+/- 30 arc-sec

Features

- Can define the tool point
- Tested under EM Discharge 20kV

Target Mounting Design

- Disc shape annulus of targets
 - Compact arrangement
 - One motion control stage for 360 targets
- Minimise diameter
 - Reduce offset errors
 - Reduce offset loads
- Sub-assembled target unit
 - Can be measured prior to installation in chamber

Design for Precision Machining

- Examples of design features
 - Minimal contact areas for precise location
 - Undercut perpendicular faces
- Features must also be measurable

Precision Machining

- Material Considerations
 - Local heating by machine tool
 - Residual stresses
 - Vacuum compatible
 - Stable over time
- Material Parameters
 - Low co-efficient thermal expansion
 - High hardness difficult to machine
 - Low porosity
- Glass Ceramic
 - Macor, Zerodur
- Machining Techniques
 - Vibration dampened work holding system
 - Lapping
 - Ultrasonic machining

Metrology Results

Step 1 Status and Further Work

Any Questions?

